
Simulink® Coder™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Coder™ Release Notes
© COPYRIGHT 2011–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be
used or copied only under the terms of the license agreement. No part of this manual may be photocopied
or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used or
defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails to
meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.
Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2017b

Model Architecture and Design . 1-2

C++ Functions: Generate C++ code from Simulink functions,
including functions that respond to initialize, reset, and
terminate events . 1-2

Data, Function, and File Definition . 1-3

Tunable Parameters: Tune parameters in model workspace . . 1-3
Virtual Buses Across Model Reference Boundaries: Check for

large numbers of function arguments caused by virtual
buses . 1-4

Code Generation . 1-5

Configuration Parameters Dialog Box: View your model and
code generation configuration parameters in unified dialog
box with search capability . 1-5

Simplified Build Folder Layout: Generate code for different
hardware settings in separate folders 1-6

Warning Messages: Build process diagnostic warnings in
Diagnostic Viewer . 1-7

Code Generation Advisor: Updates to parameter
recommendations for objectives . 1-7

Performance . 1-8

Fast Fourier Transforms in a MATLAB Function Block:
Generate code that takes advantage of the FFTW
library . 1-8

Check bug reports for issues and fixes 1-9

v

Contents

R2017a

Model Architecture and Design . 2-2

Subsystem Reuse Across Models: Reuse subsystems with
naming control and global Data Store Memory blocks across
models . 2-2

TMF and EXTMODE fields optional in TLC file 2-2

Data, Function, and File Definition . 2-3

Association of root-level Outport block with Simulink.Signal
object . 2-3

MAT-file logging for root-level Outport blocks with storage class
other than Auto . 2-3

Model Explorer accessibility for code generation settings of
lookup table and breakpoint objects 2-3

Code Generation . 2-5

Build Process Customization for S-Functions: Customize
generated makefiles with RTW.BuildInfo functions in
makecfg.m . 2-5

Source file includes shared utility header file 2-5
Generated code for Rate Transition block variables with volatile

qualifier . 2-5
IncludeMdlTerminateFcn not checked against efficiency

objectives . 2-7
More information in code generation report summary 2-7

Deployment . 2-9

NXP FRDM-K64F Board: Create models using Analog Output,
Quadrature Encoder, Serial, and UDP blocks 2-9

Support for new board STMicroelectronics Nucleo F746ZG . . . 2-9
Support for new board STMicroelectronics Nucleo F411RE . . . 2-9
Gyroscope and LCD blocks added to ARM Cortex-based VEX

Microcontroller . 2-9

Performance . 2-11

vi Contents

Dynamic Memory Allocation for MATLAB Function Block:
Generate C code that uses dynamic memory allocation . . . 2-11

Check bug reports for issues and fixes 2-14

R2016b

Model Architecture and Design . 3-2

Initialize Function and Terminate Function Blocks: Generate
code for initialize, reset, and terminate events 3-2

State Reader and State Writer Blocks: Generate code that reads
or writes state values to set terminal or initial
conditions . 3-2

Updates to protected model message identifiers 3-3

Data, Function, and File Definition . 3-4

Name and Storage Class for Outport: Configure name and
storage class for code generation directly on root-level
Outport blocks . 3-4

ASAP2 file generation for bus signals and parameters 3-4
Model Data Editor for applying storage classes to Inport blocks,

Outport blocks, signals, and Data Store Memory blocks . . . 3-7
Storage of lookup tables for calibration according to ASAP2 and

AUTOSAR standards . 3-8
More explicit purpose for SimulinkGlobal storage class 3-9
Additional tunability support for expressions 3-10

Code Generation . 3-11

Data Exchange Interface: Use independent controls to configure
C API, ASAP2, and external mode 3-11

Standard math library changes . 3-11
SupportVariableSizeSignals not checked against efficiency

objectives . 3-12
Use default installation folder on Windows system with ReFS

file system . 3-12

Deployment . 3-14

vii

Simulink Coder Target Support Packages: Generate code for
NXP Freedom boards and STMicroelectronics Nucleo
boards . 3-14

Generate code for STMicroelectronics Nucleo boards 3-14
Support for I2C and PWM blocks for FRDM-KL25Z board . . 3-14
Support for new blocks for FRDM-K64F board 3-15

Check bug reports for issues and fixes 3-17

R2016a

Model Architecture and Design . 4-2

Variants: Generate code for active variant choice as specified
with Variant Sink and Variant Source blocks 4-2

Protected Model Callbacks: Define callbacks for customized
protected models . 4-2

Simulink Coder Student Access: Obtain Simulink Coder as
student-use add-on product or with MATLAB Primary and
Secondary School Suite . 4-4

Model Block Virtual Buses: Interface to Model blocks by using
virtual buses, reducing data copies in the generated code . . 4-4

Data, Function, and File Definition . 4-10

Tolerance of data type mismatch between bus elements and
tunable structure fields . 4-10

Model Advisor check for data type mismatches between bus
elements and structure fields . 4-10

Simplified method to apply storage classes to signals and
states . 4-11

Conflict between different storage classes applied to same
signal . 4-12

Visibility and functionality changes for programmatic
properties of data objects . 4-13

Code Generation . 4-15

Simplified Configuration Parameters: Configure model more
easily via streamlined code generation panes 4-15

viii Contents

Add macro definitions to custom code 4-19
Faster generated code for linear algebra in the MATLAB

Function block . 4-20
Build button removed from Configuration Parameters dialog

box . 4-20

Deployment . 4-22

Hardware implementation parameters enabled by default . . 4-22
Simulink Coder Support Package for ARM Cortex-Based VEX

Microcontroller . 4-22

Performance . 4-23

Removal of Minimize data copies between local and global
variables parameter . 4-23

Check bug reports for issues and fixes 4-25

R2015aSP1

Bug Fixes

Check bug reports for issues and fixes 5-2

R2015b

Model Architecture and Design . 6-2

Support for C++ code generation in protected models 6-2
Reusable code for subsystems containing Stateflow charts . . . 6-2
Header file change for model containing messages in Stateflow

charts . 6-2
Type definitions in rapid accelerator mode 6-2

ix

Data, Function, and File Definition . 6-4

Configuration parameter Inline parameters name and
functionality change . 6-4

Code Generation . 6-6

MinGW-w64 Compiler Support: Compile MEX files on 64-bit
Windows with free compiler . 6-6

Internationalization: Generate and review code containing
mixed languages for different locales 6-6

Hardware Implementation Selection: Quickly generate code for
popular embedded processors . 6-7

Smarter Code Regeneration: Regenerate code only when model
settings that impact code are modified 6-10

Toolchain approach with custom targets added 6-10
Build configuration setting can affect setting for toolchain . . 6-10

Deployment . 6-12

External mode MEX-file build requires sl_services library . . 6-12

Performance . 6-13

Consolidation of redundant if-else and for statements in
separate code regions . 6-13

More efficient code for multirate models 6-16

Check bug reports for issues and fixes 6-2

R2015a

Model Architecture and Design . 7-2

Command-line APIs for protected models 7-2
Improved use of workers for faster parallel builds 7-3
Usability enhancements for protected models 7-3
No code reuse for function-call subsystems with mask

parameters . 7-4

x Contents

Check bug reports for issues and fixes 7-6

R2014b

Model Architecture and Design . 8-2

Code generation for Simulink Function and Function Caller
blocks . 8-2

Option to suppress generation of shared constants 8-2
Usability enhancements for protected models 8-2

Data, Function, and File Definition . 8-4

Enumerated data type size control . 8-4
Vector and matrix expressions as model argument values 8-4

Code Generation . 8-5

Option to separate output and update functions for GRT
targets . 8-5

Highlighted configuration parameters from Code Generation
Advisor reports . 8-5

License requirement for viewing code generation report 8-5
Improved report generation performance 8-5
Intel Performance Primitives (IPP) platform-specific code

replacement libraries for cross-platform code generation . . 8-6

Deployment . 8-7

Support for Eclipse IDE and Desktop Targets has been
removed . 8-7

Performance . 8-8

Block reduction optimization improvement 8-8

Check bug reports for issues and fixes 8-10

xi

R2014a

Model Architecture and Design . 9-2

Custom post-processing function for protected models 9-2
Context-sensitive help for the Create Protected Model dialog

box . 9-2

Data, Function, and File Definition . 9-3

C++ class generation . 9-3
Simpler behavior for tuning all parameters and support for

referenced models . 9-3
Improved control of C and C++ code interface packaging 9-5
Multi-instance code error diagnostic for reusable function code

and C++ class code . 9-7
Removal of TRUE and FALSE from rtwtypes.h 9-8

Code Generation . 9-9

Independent configuration selections for standard math and
code replacement libraries . 9-9

Generated code compilation using LCC-64 bit on Windows
hosts . 9-11

Improved code integration of shared utility files 9-11
Optimized inline constant expansion 9-11
rtwtypes.h included before tmwtypes.h 9-11
Constant block output value used when in nonreusable

subsystem . 9-11

Deployment . 9-13

Support for Eclipse IDE and Desktop Targets will be
removed . 9-13

Additional build folder information and protected model
support for RTW.getBuildDir function 9-13

Wind River Tornado (VxWorks 5.x) target to be removed in
future release . 9-14

Performance . 9-15

xii Contents

To Workspace, Display, and Scope blocks removed by block
reduction . 9-15

Optimized reusable subsystem inputs 9-15

Check bug reports for issues and fixes 9-17

R2013b

Model Architecture and Design . 10-2

Multilevel access control when creating password-protected
models for IP protection . 10-2

Simulink Coder checks in Model Advisor 10-2

Data, Function, and File Definition . 10-3

Imported data can be shared . 10-3
Readability improved for constant names 10-3
Removal of two's complement guard and RTWTYPES_ID from

rtwtypes.h . 10-4
MODEL_M macro renamed in static main for multi-instance

GRT target . 10-4

Code Generation . 10-5

Optimized code for long long data type 10-5
<LEGAL> tokens removed from comments in generated

code . 10-5

Deployment . 10-6

Compiler toolchain interface for automating code generation
builds . 10-6

Log data on Linux-based target hardware 10-7
Modified file locations and commands for rebuilding external

mode MEX files . 10-8

Performance . 10-9

Reduced data copies for bus signals with global storage 10-9

xiii

Customization . 10-10

Support for user-authored MATLAB system objects 10-10
TLC Options removed from Configuration Parameters dialog

box . 10-10

Check bug reports for issues and fixes 10-12

R2013a

Data, Function, and File Definition . 11-2

Optimized interfaces for Simulink functions called in
Stateflow . 11-2

Shortened system-generated identifier names 11-2

Code Generation . 11-5

Shared utility name consistency across builds with maximum
identifier length control . 11-5

Code Generation Advisor available on menu bar 11-5
Code generation build when reusable library subsystem link

status changes . 11-5
Protected models usable in model reference hierarchies 11-5

Deployment . 11-7

Simplified multi-instance code with support for referenced
models . 11-7

External mode control panel improvements and C API
access . 11-8

Hardware configuration relocation from Target Preferences
block to Configuration Parameters dialog 11-9

Support ending for Eclipse IDE in a future release 11-10
GRT malloc target to be removed in future release 11-10

Customization . 11-11

MakeRTWSettingsObject model parameter removed 11-11

xiv Contents

Check bug reports for issues and fixes 11-13

R2012b

Unified and simplified code interface for ERT and GRT
targets . 12-2

Convenient packNGo dialog for packaging generated code
and artifacts . 12-4

Reusable code for subsystems shared by referenced
models . 12-4

Code generation for protected models for accelerated
simulations and host targets . 12-5

Reduction of data copies with buses and more efficient for-
loops in generated code . 12-5

Reduction of cyclomatic complexity with virtual bus
expansion . 12-5

Simplifying for loop control statements 12-5

Unified rtiostream serial and TCP/IP target connectivity for
all host platforms . 12-6

Constant parameters generated as individual constants to
shared location . 12-6

Code efficiency enhancements . 12-6

Optimized code generation of Delay block 12-7

Search improvements in code generation report 12-7

GRT template makefile change for MAT-file logging
support . 12-7

Change for blocks that use TLC custom code functions in
multirate subsystems . 12-8

xv

Model rtwdemo_f14 removed from software 12-9

Check bug reports for issues and fixes 12-10

R2012a

Simplified Call Interface for Generated Code 13-2

Incremental Code Generation for Top-Level Models 13-3

Minimal Header File Dependencies with packNGo
Function . 13-3

ASAP2 Enhancements for Model Referencing and Structured
Data . 13-4

Ability to Merge ASAP2 Files Generated for Top and
Referenced Models . 13-4

ASAP2 File Generation for Test Pointed Signals and
States . 13-4

ASAP2 File Generation for Tunable Structure
Parameters . 13-4

Serial External Mode Communication Using rtiostream
API . 13-5

Improved Data Transfer in External Mode
Communication . 13-5

Changes for Desktop IDEs and Desktop Targets 13-5
Support Added for GCC 4.4 on Host Computers Running Linux

with Eclipse IDE . 13-5
Limitation: Parallel Builds Not Supported for Desktop

Targets . 13-5

Code Generation Report Enhancements 13-6
Post-build Report Generation . 13-6
Generate Code Generation Report Programmatically 13-6
Searching in the Code Generation Report 13-6

xvi Contents

New Reserved Keywords for Code Generation 13-6

Improved MAT-File Logging . 13-7

rtwdemo_f14 Being Removed in a Future Release 13-7

New and Enhanced Demos . 13-7

Check bug reports for issues and fixes 13-9

R2011b

n-D Lookup Table Block Supports Tunable Table Size 14-2

Complex Output Support in Generated Code for the
Trigonometric Function Block . 14-3

Code Optimizations for the Combinatorial Logic Block 14-3

Code Optimizations for the Product Block 14-3

Enhanced MISRA C Code Generation Support for Stateflow
Charts . 14-4

Change for Constant Sample Time Signals in Generated
Code . 14-4

New Code Generation Advisor Objective for GRT
Targets . 14-5

Improved Integer and Fixed-Point Saturating Cast 14-5

Generate Multitasking Code for Concurrent Execution on
Multicore Processors . 14-5

Changes for Desktop IDEs and Desktop Targets 14-5
New Target Function Library for Intel IPP/SSE (GNU) 14-6
Support Added for Single Instruction Multiple Data (SIMD)

with Intel Processors . 14-6

xvii

Reserved Keyword UNUSED_PARAMETER 14-6

Target API for Verifying MATLAB® Distributed Computing
Server™ Worker Configuration for Parallel Builds 14-6

License Names Not Yet Updated for Coder Product
Restructuring . 14-7

New and Enhanced Demos . 14-7

Check bug reports for issues and fixes 14-9

R2011a

Coder Product Restructuring . 15-2
Product Restructuring Overview . 15-2
Resources for Upgrading from Real-Time Workshop or

Stateflow Coder . 15-3
Migration of Embedded MATLAB Coder Features to MATLAB

Coder . 15-4
Migration of Embedded IDE Link and Target Support Package

Features to Simulink Coder and Embedded Coder 15-4
User Interface Changes Related to Product Restructuring . . 15-5
Simulink Graphical User Interface Changes 15-5

Changes for Desktop IDEs and Desktop Targets 15-6
Feature Support for Desktop IDEs and Desktop Targets 15-6
Location of Blocks for Desktop Targets 15-7
Location of Demos for Desktop IDEs and Desktop Targets . . 15-7
Multicore Deployment with Rate Based Multithreading 15-8

Code Optimizations for Discrete State-Space Block, Product
Block, and MinMax Block . 15-9

Ability to Share User-Defined Data Types Across Models . . 15-9

C API Provides Access to Root-Level Inputs and
Outputs . 15-10

xviii Contents

ASAP2 File Generation Supports Standard Axis Format for
Lookup Tables . 15-10

ASAP2 File Generation Enhancements for Computation
Methods . 15-10

Custom Names for Computation Methods 15-10
Ability to Suppress Computation Methods for FIX_AXIS When

Not Required . 15-11

Lookup Table Block Option to Remove Input Range Checks
in Generated Code . 15-11

Reentrant Code Generation for Stateflow Charts That Use
Events . 15-12

Redundant Check Code Removed for Stateflow Charts That
Use Temporal Operators . 15-13

Support for Multiple Asynchronous Function Calls Into a
Model Block . 15-13

Changes to ver Function Product Arguments 15-14

Updates to Target Language Compiler (TLC) Semantics and
Diagnostic Information . 15-14

Change to Terminate Function for a Target Language
Compiler (TLC) Block Implementation 15-15

New and Enhanced Demos . 15-15

Check bug reports for issues and fixes 15-16

xix

R2017b

Version: 8.13

New Features

Bug Fixes

Compatibility Considerations

1

Model Architecture and Design

C++ Functions: Generate C++ code from Simulink functions, including
functions that respond to initialize, reset, and terminate events

Generate C++ Code for Simulink functions

In R2014b, the code generator introduced C code generation support for Simulink
Function and Function Caller blocks. R2017b adds C++ code generation support for these
blocks. Using the blocks, you can:

• Define a function that can be invoked by a function caller.
• Call a function to compute output.
• Save and restore a state from nonvolatile memory.
• Provide entry-point functions that respond to external reset events.

You can invoke a C function that the code generator produces from a Simulink Function
block with code generated from a Stateflow® chart, but not for a C++ function. Due to
current scope limitations for generated C++ functions, you must invoke those functions
with code generated from a Function Caller block.

For more information, see “Generate Code That Responds to Initialize, Reset, and
Terminate Events” and the Simulink Function and Function Caller block reference
pages.

Generate C++ Code for initialize, reset, and terminate events

In R2016b, the code generator introduced C code generation support for the blocks
Initialize Function, Reset Function, and Terminate Function. R2017b adds C++ code
generation support for these blocks. You can use these blocks to generate code that
controls execution of a component in response to initialize, reset, and terminate events.
For example, use these blocks to generate code that:

• Starts and stops an application component
• Calculates initial conditions

For more information, see“Simulink Function Blocks and Code Generation” and the
Initialize Function, Reset Function, and Terminate Function block reference pages.

R2017b

1-2

Data, Function, and File Definition

Tunable Parameters: Tune parameters in model workspace

A storage class causes a parameter object to appear in the generated code as a global
variable whose value you can change during execution. For example, you can apply the
storage class ExportedGlobal to a Simulink.Parameter object. Before R2017b, you
could not apply a storage class other than Auto to parameter objects that you stored in a
model workspace. In R2017b, you can apply a storage class other than Auto. However, if
you store an AUTOSAR.Parameter object in a model workspace, the code generator
ignores the storage class that you specify for the object.

A storage class yields a global variable (or some other global symbol such as a macro) in
the generated code, which means the variable can have only one definition in the code.
However, in a model reference hierarchy in Simulink, a parameter object in a model
workspace can have the same name as a different parameter object in the model
workspace of another model. If these parameter objects use storage classes other than
Auto, when you attempt to generate code from the hierarchy, the definitions of the
corresponding global variables conflict, preventing code generation. In general, you must
make sure that each global symbol in a model hierarchy is unique.

Compatibility Considerations

Before R2017b, when you set the model configuration parameter Default parameter
behavior to Tunable, a variable or parameter object that you stored in a model
workspace did not appear in the generated code as a single, tunable entity that resides in
memory (such as a field of the model_P structure). Instead, the code generator created a
separate structure field for each block parameter that used the variable or object. In
R2017b, the code generator creates a single structure field for each variable or parameter
object.

When you generate code from a model that you created before R2017b, parameter
diagnostics can generate new warnings or errors. For example, if the model uses such a
variable or object in an expression that the code generator cannot preserve in the
generated code, depending on the setting for the model configuration parameter Detect
loss of tunability, attempting to generate code from the model can yield a new warning
or error.

 Data, Function, and File Definition

1-3

Virtual Buses Across Model Reference Boundaries: Check for large
numbers of function arguments caused by virtual buses

When a virtual bus signal with many bus elements enters or exits a referenced model,
the entry-point functions generated for the model (such as model_step) exchange data
through separate arguments, one argument for each bus element that the model uses. In
R2017b, you can use the new Model Advisor check Check for large number of
function arguments from virtual bus across model reference boundary to
identify such buses. To generate code that passes a structure pointer instead of many
individual arguments, click Update Models. Simulink then makes the target buses
nonvirtual by configuring Inport and Outport block parameters and inserting Signal
Conversion blocks as necessary.

R2017b

1-4

Code Generation

Configuration Parameters Dialog Box: View your model and code
generation configuration parameters in unified dialog box with search
capability

Previously, the Configuration Parameters dialog box contained two tabs: a tab for
commonly used parameters and a tab that provided a searchable list of all available
parameters. In R2017b, the Configuration Parameters dialog box combines these
features in a unified dialog box with a search capability.

• View commonly used parameters on a category pane. Access advanced category
parameters on the same pane.

• To quickly find a specific parameter in the dialog box, use the search tool.
• Right-click a parameter to get the parameter name to use in scripts, view parameter

dependencies, and navigate to parameter documentation.

For more information, see “Configuration Parameters Dialog Box Overview” (Simulink).

Compatibility Considerations
• In R2017b, advanced parameters that were previously available only on the All

Parameters tab can be found under the Advanced Parameters toggle of the
relevant category pane. To access this toggle, hover over the ellipsis at the bottom of
the pane. Alternatively, to find an advanced parameter, use the search tool at the top
of the dialog box.

• If you use an sl_customization.m script to hide or disable parameters in the
Configuration Parameters dialog box, the script requires updates to widget ID's and
callback registrations. For example:

• In R2017a:
function sl_customization(cm)

% Disable for standalone Configuration Parameters dialog box.
cm.addDlgPreOpenFcn('Simulink.ConfigSet',@disableRTWBrowseButton)
% Disable for Configuration Parameters dialog box
cm.addDlgPreOpenFcn('Simulink.RTWCC',@disableRTWBrowseButton)

end

 Code Generation

1-5

function disableRTWBrowseButton(dialogH)

 % Takes a cell array of widget Factory ID.
 dialogH.disableWidgets({'Tag_ConfigSet_RTW_Browse'})

end

• In R2017b:
function sl_customization(cm)

% Disable for all Configuration Parameters dialog boxes
configset.dialog.Customizer.addCustomization(@disableRTWBrowseButton,cm);

end

function disableRTWBrowseButton(dialogH)

 % Takes a cell array of widget Factory ID.
 dialogH.disableWidgets({'STF_Browser'})

end

For more information on getting widget ID's and customizing the dialog box, see “Disable
and Hide Dialog Box Controls” (Simulink).

Simplified Build Folder Layout: Generate code for different hardware
settings in separate folders

Specify separate folders for generated code from models that are configured for different
target environments. Use the Simulink.fileGenControl option,
CodeGenFolderStructure, or the Simulink preference, Code generation folder
structure.

If you use this approach, do not manually specify the folder and subfolder locations for
simulation and generated code files. Use the information that RTW.getBuildDir
provides. Custom targets that do not use location information from RTW.getBuildDir
might not support this approach.You can obtain the current value of
CodeGenFolderStructure with this command:

Simulink.fileGenControl('get', 'CodeGenFolderstructure')

For more information, see:

• “Manage Build Process Folders”
• Simulink.fileGenControl

R2017b

1-6

Warning Messages: Build process diagnostic warnings in Diagnostic
Viewer

Previously, build process diagnostic warnings were in the build log. These warnings are
now in the Diagnostic Viewer. This change increases the visibility of these warning
messages.

Code Generation Advisor: Updates to parameter recommendations for
objectives

In R2017b, when the Code Generation Advisor checks your model configuration settings
against code generation objectives, these changes apply:

• For checks against safety precaution objectives, the Code Generation Advisor does not
consider the parameter Conditional input branch execution
(ConditionallyExecuteInputs).

• For checks against ROM efficiency objectives, the Code Generation Advisor considers
the parameter Remove code that protects against division arithmetic exceptions
(NoFixptDivByZeroProtection).

• For checks against ROM and execution efficiency objectives, the Code Generation
Advisor considers the parameter Support long long (ProdLongLongMode).

 Code Generation

1-7

Performance

Fast Fourier Transforms in a MATLAB Function Block: Generate code
that takes advantage of the FFTW library

In previous releases, when you generated code for FFT functions (fft, fft2, fftn, ifft,
ifft2, and ifftn) in a MATLAB Function block, the code generator produced code for
the FFT algorithms.

In R2017b, to improve the execution speed of code generated for FFT functions, the code
generator can produce calls to an FFT library. To generate calls to a specific, installed
FFTW library, provide an FFT library callback class. See “Speed Up Fast Fourier
Transforms in Code Generated from a MATLAB Function Block”.

For more information about the FFTW library, see www.fftw.org.

R2017b

1-8

http://www.fftw.org

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

1-9

https://www.mathworks.com/support/bugreports/

R2017a

Version: 8.12

New Features

Bug Fixes

2

Model Architecture and Design

Subsystem Reuse Across Models: Reuse subsystems with naming
control and global Data Store Memory blocks across models

In R2017a, the code generator can generate reusable code for the following modeling
patterns:

• Subsystems across model reference boundaries that contain Data Store blocks that
read from or write to a global data store. In the Data Store Block Parameters dialog
box, you specify a global data store for the Data store name parameter. You define
the global data store in the base workspace using a signal object.

• Reusable functions that have user-specified names. In the Subsystem Block
Parameters dialog box, on the Code Generation tab, you specify a name by selecting
User specified for the Function name options parameter and providing a name
for the Function name parameter. The code generator no longer appends the user-
specified name with a checksum.

The reusable code is in the shared utilities folder (slprj/)target/_sharedutils.
Generating reusable code conserves ROM consumption and improves code execution
speed. See Subsystems.

TMF and EXTMODE fields optional in TLC file

In R2017a, if you do not specify the TMF or EXTMODE fields in a system target TLC file,
the file is still valid. To change the values for the parameters Template makefile
(TemplateMakefile) and External mode (ExtMode), you can instead use the callback
function specified by rtwgensettings.SelectCallback.

For more information, see Customize System Target Files.

R2017a

2-2

https://www.mathworks.com/help/releases/R2017a/rtw/subsystems.html
https://www.mathworks.com/help/releases/R2017a/rtw/ug/customizing-system-target-files.html

Data, Function, and File Definition

Association of root-level Outport block with Simulink.Signal object

Before R2017a, you could not associate a root-level Outport block with a
Simulink.Signal object.

In R2017a, you can use the Model Data Editor (see Configure Data Properties by Using a
Table) to make this association.

MAT-file logging for root-level Outport blocks with storage class other
than Auto

Before R2017a, when you used the Model Data Editor to apply a storage class or custom
storage class other than Auto to a root-level Outport block, MAT-file logging
(Configuration Parameters > MAT-file logging) did not support the Outport block.

In R2017a, MAT-file logging supports the Outport block unless the storage class is
ImportedExternPointer or yields nonaddressable data in the generated code. For
example, the custom storage class GetSet causes the Outport to appear in the generated
code as a function call, which is not addressable.

Model Explorer accessibility for code generation settings of lookup table
and breakpoint objects

Before R2017a, in the Model Explorer Contents pane, you were not able to access some
code generation settings (properties) of Simulink.LookupTable and
Simulink.Breakpoint objects, including:

• StorageClass
• HeaderFile (for the variable that appears in the generated code)
• HeaderFileName (for the structure type that appears in the generated code)
• DefinitionFile
• Alignment
• SupportTunableSize

 Data, Function, and File Definition

2-3

https://www.mathworks.com/help/releases/R2017a/simulink/ug/inspect-and-configure-design-attributes-of-model-data.html
https://www.mathworks.com/help/releases/R2017a/simulink/ug/inspect-and-configure-design-attributes-of-model-data.html

Except for SupportTunableSize, these properties belong to the Simulink.CoderInfo
and Simulink.lookuptable.StructTypeInfo objects that reside in the CoderInfo
and StructTypeInfo properties of the lookup table or breakpoint object.

In R2017a, you can inspect and modify these code generation settings in the Model
Explorer Contents pane.

R2017a

2-4

Code Generation

Build Process Customization for S-Functions: Customize generated
makefiles with RTW.BuildInfo functions in makecfg.m

To customize generated makefiles for S-functions, create makecfg.m and
yourSFunction_makecfg.m files that use RTW.BuildInfo functions to specify:

• Additional source files and libraries
• Preprocessor macro definitions
• Compiler flags

For more information, see:

• Use makecfg to Customize Generated Makefiles for S-Functions
• Import Calls to External Code into Generated Code with Legacy Code Tool

Source file includes shared utility header file

In R2016b, the model.h file or the subsystem.h file contained the #include command
for the header file that contained declarations for shared utility functions. In R2017a, the
source file contains the #include command for this header file. Including the header file
in the source file reduces compilation time and improves code readability because the
model.c file or the subsystem.c file uses the shared utility functions. The model.h file
or the subsystem.h file does not use the shared utility functions.

Generated code for Rate Transition block variables with volatile qualifier

In R2016b, for Rate Transition blocks, when you selected the Ensure data integrity
during data transfer parameter and cleared the Ensure deterministic data
transfer (maximum delay) parameter, some compilers performed optimizations that
removed or reordered protection logic, which caused data integrity issues. Protection
logic is particularly important for safety-critical system deployment. To avoid potential
issues, users had to turn off compiler optimizations.

In R2017a, the generated code contains the volatile qualifier in variables in the
D_Work structure. This qualifier indicates to most compilers not to perform optimizations

 Code Generation

2-5

https://www.mathworks.com/help/releases/R2017a/rtw/ug/use-makecfg-to-customize-generated-makefiles-for-s-functions.html
https://www.mathworks.com/help/releases/R2017a/rtw/ug/legacy-code-tool-code-insertion.html

that remove or reorder protection logic because the value of these variables can possibly
change outside control or detection of the program. The presence of the volatile
qualifier means that users no longer have to turn off compiler optimizations and sacrifice
performance for safety.

For example, the model rtwdemo_ratetrans contains six Rate Transition blocks. In the
block parameters dialog boxes for IntegOnlyF2S and IntegOnlyS2F, the Ensure data
integrity during data transfer parameter is selected and the Ensure deterministic
data transfer (maximum delay) parameter is cleared.

In R2016b, the rtwdemo_ratetrans.h file contained this code:
/* Block states (auto storage) for system '<Root>' */
typedef struct {
 real_T Integrator1_DSTATE[20]; /* '<S1>/Integrator1' */
 real_T Integrator2_DSTATE[20]; /* '<S1>/Integrator2' */
 real_T Integrator3_DSTATE[20]; /* '<S1>/Integrator3' */
 real_T DetAndIntegS2F_Buffer0[20]; /* '<Root>/DetAndIntegS2F' */

R2017a

2-6

 real_T IntegOnlyS2F_Buffer[40]; /* '<Root>/IntegOnlyS2F' */
 real_T IntegOnlyF2S_Buffer0[20]; /* '<Root>/IntegOnlyF2S' */
 uint32_T Algorithm_ELAPS_T[2]; /* '<Root>/Algorithm' */
 uint32_T Algorithm_PREV_T[2]; /* '<Root>/Algorithm' */
 int8_T IntegOnlyS2F_ActiveBufIdx; /* '<Root>/IntegOnlyS2F' */
 int8_T IntegOnlyF2S_semaphoreTaken; /* '<Root>/IntegOnlyF2S' */
} DW_rtwdemo_ratetrans_T;

The Rate Transition block variables did not contain the volatile qualifier.

In R2017a, the rtwdemo_ratetrans.h file contains this code:

/* Block states (auto storage) for system '<Root>' */
typedef struct {
 real_T Integrator1_DSTATE[20]; /* '<S1>/Integrator1' */
 real_T Integrator2_DSTATE[20]; /* '<S1>/Integrator2' */
 real_T Integrator3_DSTATE[20]; /* '<S1>/Integrator3' */
 real_T DetAndIntegS2F_Buffer0[20]; /* '<Root>/DetAndIntegS2F' */
 volatile real_T IntegOnlyS2F_Buffer[40];/* '<Root>/IntegOnlyS2F' */
 volatile real_T IntegOnlyF2S_Buffer0[20];/* '<Root>/IntegOnlyF2S' */
 uint32_T Algorithm_ELAPS_T[2]; /* '<Root>/Algorithm' */
 uint32_T Algorithm_PREV_T[2]; /* '<Root>/Algorithm' */
 volatile int8_T IntegOnlyS2F_ActiveBufIdx;/* '<Root>/IntegOnlyS2F' */
 volatile int8_T IntegOnlyF2S_semaphoreTaken;/* '<Root>/IntegOnlyF2S' */
} DW_rtwdemo_ratetrans_T;

The variables corresponding to Rate Transition blocks that have the Ensure data
integrity during data transfer parameter selected and the Ensure deterministic
data transfer (maximum delay) parameter cleared contain the volatile qualifier.
These variables have the IntegOnly comment.

IncludeMdlTerminateFcn not checked against efficiency objectives

In R2017a, when the Code Generation Advisor checks your model configuration settings
against code generation efficiency objectives, it does not consider the parameter
Terminate function required (IncludeMdlTerminateFcn).

More information in code generation report summary

Additional fields in the code generation report Summary page provide information on
your model and the generated code, including:

 Code Generation

2-7

https://www.mathworks.com/help/releases/R2017a/rtw/ref/terminate-function-required.html

• Author
• Last Modified By
• Tasking Mode (except for exported models)
• System Target File
• Hardware Device Type
• Type of Build
• Code Generation Advisor (if you run Code Generation Advisor as part of the build

process, it provides link to Code Generation Advisor Report)
• Code Reuse Exception (if exceptions exist, it links to Subsystem Report)

For more information on code generation reports, see Reports for Code Generation.

R2017a

2-8

https://www.mathworks.com/help/releases/R2017a/rtw/ug/reports-for-code-generation.html

Deployment

NXP FRDM-K64F Board: Create models using Analog Output,
Quadrature Encoder, Serial, and UDP blocks

This table lists the support for these new blocks.
Block Usage
Analog Output Send an analog signal to DAC0_OUT pin
Quadrature Encoder Measure the rotation of the encoder in ticks
Serial Receive Read data from the UART port
Serial Transmit Send data to the UART port
UDP Receive Receive UDP packets from another UDP

host
UDP Send Send UDP packets to another UDP host

Support for new board STMicroelectronics Nucleo F746ZG

You can use the Simulink Coder Support Package for STMicroelectronics® Nucleo
Boards to generate code for STMicroelectronics Nucleo F746ZG board.

You must install the Simulink Coder Support Package for STMicroelectronics Nucleo
Boards to use this support.

Support for new board STMicroelectronics Nucleo F411RE

You can use the Simulink Coder Support Package for STMicroelectronics Nucleo Boards
to generate code for STMicroelectronics Nucleo F411RE board.

You must install the Simulink Coder Support Package for STMicroelectronics Nucleo
Boards to use this support.

Gyroscope and LCD blocks added to ARM Cortex-based VEX
Microcontroller

This table lists the support for these new blocks.

 Deployment

2-9

Block Usage
Gyroscope Measure the yaw rotation in degrees
LCD Button Read the state of the selected button
LCD Screen Display text and numbers on the display

R2017a

2-10

Performance

Dynamic Memory Allocation for MATLAB Function Block: Generate C
code that uses dynamic memory allocation
In R2017a, simulation and C/C++ code generation support dynamic memory allocation
for arrays in a MATLAB Function block, a Stateflow chart, or a System object™
associated with a MATLAB System block. Dynamic memory allocation allocates memory
as needed at run time, instead of allocating memory statically on the stack. Dynamic
memory allocation is beneficial when:

• You do not know the upper bound of an array.
• You do not want to allocate memory on the stack for large arrays.

By default, dynamic memory allocation for MATLAB Function blocks is enabled for GRT-
based targets and disabled for ERT-based targets. To change the setting, in the
Configuration Parameters dialog box, on the All Parameters tab, in the Simulation
Target > Advanced parameters category, clear or select the Dynamic memory
allocation in MATLAB Function blocks check box.

When dynamic memory allocation is enabled, the code generator uses dynamic memory
allocation for arrays whose size is equal to or greater than a threshold. The default value
of this threshold is 64 kilobytes. To change the threshold, in the Configuration
Parameters dialog box, on the All Parameters tab, in the Simulation Target >
Advanced parameters category, set the Dynamic memory allocation threshold in
MATLAB Function blocks parameter.

In the generated C/C++ code, the code generator represents dynamically allocated data
as a structure type called emxArray. The code generator produces utility functions that
the generated code uses to manage the emxArrays. If you have Embedded Coder®, you
can customize the identifiers for emxArrays and the utility functions.

• To customize emxArray identifiers, use the EMX array types identifier format
parameter in the Simulation Target > Advanced parameters category of the All
Parameters tab.

• To customize the utility function identifiers, use the EMX array utility functions
identifier format parameter in the Simulation Target > Advanced parameters
category of the All Parameters tab.

Dynamic memory allocation does not apply to:

 Performance

2-11

• Input and output signals. Variable-size input and output signals must have an upper
bound.

• Parameters or global variables. Parameters and global variables must be fixed-size.
• Fields of bus arrays. Bus arrays cannot have variable-size fields.
• Discrete state properties of System objects associated with a MATLAB System block.

See Control Memory Allocation for Variable-Size Arrays in a MATLAB Function Block.

R2017a

2-12

https://www.mathworks.com/help/releases/R2017a/rtw/ug/control-memory-allocation-for-variable-size-arrays-in-a-matlab-function-block.html

2-13

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

R2017a

2-14

https://www.mathworks.com/support/bugreports/

R2016b

Version: 8.11

New Features

Bug Fixes

Compatibility Considerations

3

Model Architecture and Design

Initialize Function and Terminate Function Blocks: Generate code for
initialize, reset, and terminate events

R2016b introduces the blocks Initialize Function and Terminate Function. You can use
these blocks to generate code that controls execution of a component in response to
initialize, reset, or terminate events. For example, use them to generate code that:

• Starts and stops an application component.
• Calculates initial conditions.
• Saves and restores state from nonvolatile memory.
• Provides entry-point functions that respond to external reset events.

For more information, see Generate Code That Responds to Initialize, Reset, and
Terminate Events and descriptions of the Initialize Function and Terminate Function
blocks.

State Reader and State Writer Blocks: Generate code that reads or
writes state values to set terminal or initial conditions

R2016b introduces State Reader and State Writer blocks. Use these blocks with the new
Initialize Function and Terminate Function blocks to generate code that controls
execution of a component in response to initialize, reset, or terminate events.

By default, the Initialize Function block includes a State Writer block. The Terminate
Function block includes a State Reader block. Set up the State Writer block or the State
Reader block to write the state to or read the state from a given state owner block in your
model or subsystem. When the function is triggered, the value of the state variable is
read from or written to the specified block. The code generator uses unique state names
configured for the blocks to identify the reusable function code for a given read or write
operation.

Supported state owner blocks include:

• Delay
• Discrete Filter

R2016b

3-2

https://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html
https://www.mathworks.com/help/releases/R2016b/rtw/ug/generate-code-that-handles-initialize-reset-and-terminate-events.html
https://www.mathworks.com/help/releases/R2016b/rtw/ug/generate-code-that-handles-initialize-reset-and-terminate-events.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/statereader.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/statewriter.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html

• Discrete State-Space
• Discrete-Time Integrator
• Discrete Transfer Fcn
• Discrete Zero-Pole
• S-Function
• Trigger
• Unit Delay

For more information, see Generate Code That Responds to Initialize, Reset, and
Terminate Events and descriptions of the Initialize Function, Terminate Function, Event
Listener, State Reader, and State Writer blocks.

Updates to protected model message identifiers

In R2016b, protected model error message identifiers have been updated.

Compatibility Considerations

If you have protected model code, such as a switch expression, that depends on specific
protected model error message identifiers, update this code with the new identifiers.

 Model Architecture and Design

3-3

https://www.mathworks.com/help/releases/R2016b/rtw/ug/generate-code-that-handles-initialize-reset-and-terminate-events.html
https://www.mathworks.com/help/releases/R2016b/rtw/ug/generate-code-that-handles-initialize-reset-and-terminate-events.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/eventlistener.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/eventlistener.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/statereader.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/statewriter.html

Data, Function, and File Definition

Name and Storage Class for Outport: Configure name and storage
class for code generation directly on root-level Outport blocks

At the root level of a model, Outport blocks represent outputs that other systems can
consume as inputs. Prior to R2016b, to configure code generation for an Outport block,
you could not apply a name or storage class directly to the block. Instead, you applied a
name and storage class to the signal line that entered the block. Optimizations
eliminated the Outport block from the generated code, instead allocating memory for the
signal line.

In R2016b, use the Model Data Editor (see “Model Data Editor for applying storage
classes to Inport blocks, Outport blocks, signals, and Data Store Memory blocks” on page
3-7) to apply a name and storage class directly to an Outport block. You can now:

• Configure system inputs and outputs (Inport and Outport blocks) before you develop
the internal algorithm of the system.

• Store the name and storage class specifications in the block. When you delete the
signal line that enters the block, you do not lose these specifications.

• Distribute a single signal value to multiple system outputs by branching a signal line
to multiple Outport blocks.

To programmatically apply storage classes to Outport blocks, use the new parameters
SignalName, StorageClass, and SignalObject.

ASAP2 file generation for bus signals and parameters

R2016b enhances ASAP2 file generation to support bus signals and bus parameters. The
following model structures now can be exported as measurements and characteristics
and used with ASAP2 based tools to calibrate models:

• Bus type signals and discrete states that are associated with Simulink.Signal or
mpt.Signal derived objects with compatible storage classes

• Bus type test points
• Nested buses and structures for nonlookup parameters
• Nested buses for signals and test points

R2016b

3-4

• Arrays of buses for signals and test points

With nested structure support, you can structure parameters and access each field for
calibration. You also can calibrate model reference parameters that are stored in
structures.

ASAP2 file generation for nested structures involves additional post-code generation
steps, which require:

• A compiler that generates elf files
• A readelf utility
• Compiling with the debug option

Compatibility Considerations

To support ASAP2 file generation with nested structures, R2016b requires additional
post-code generation steps. Also, if you modified a version of the ASAP2 user template
asap2scalar.tlc from a previous release, R2016b requires minor API and algorithm
revisions.

Perform additional steps after code generation for nested structures

C code generation generates model bus parameters and bus signals in variables with
nested structures. A map file is not sufficient to retrieve the address of individual fields
for each signal or parameter. ASAP2 file generation now uses DWARF debug information
to collect structure layout information and emit correct addresses in the a2l file. The
procedure requires a readelf utility.

To calibrate nested structures, perform the following extra steps after code generation.

1 Create a dwarf file. Execute the following command in the MATLAB® Command
Window.
>> !readelf -wi model.elf > model.dwarf;

2 If you generated code for referenced models, each model reference build generates an
a2l file. Merge the files using the rtw.asap2MergeMdlRefs function.
>> rtw.asap2MergeMdlRefs('topmodel','merged.a2l');

3 To add addresses to the a2l file, use the rtw.asap2SetAddress function.
>> rtw.asap2SetAddress('model.a2l','model.dwarf');

 Data, Function, and File Definition

3-5

The extra steps can be integrated into an automated build process. Step 1, dwarf file
creation, can be included in a template makefile or build tool integration file, following
the link command that generates the elf file. Alternatively, Step 1 can be included in a
post-code generation command.

Steps 2 and 3 can be integrated in a build process hook method in an
STF_make_rtw_hook file. For example:
function ert_make_rtw_hook(hookMethod,modelName,rtwroot,templateMakefile,buildOpts,buildArgs,buildInfo)
% ert_make_rtw_hook - Sample hook file to automate A2L merge and address population
%
 switch hookMethod

 case 'after_make'
 % Called after make process is complete.

 % Merge A2L files for model reference.
 mergea2l(modelName,buildInfo);

 end
end

function mergea2l(modelName,buildInfo)
% Merge the A2L files
% When using model reference, an A2L file is created for each model.
% Merge them into one file.

mdlRefTargetType = get_param(modelName,'ModelReferenceTargetType');
isNotModelRefTarget = strcmp(mdlRefTargetType,'NONE');

if strcmp(get_param(modelName,'GenerateASAP2'),'on')
 if isNotModelRefTarget
 if ~isempty(buildInfo.ModelRefs)
 rtw.asap2MergeMdlRefs(modelName, [modelName '.a2l']);
 end
 rtw.asap2SetAddress([modelName '.a2l'], [modelName '.dwarf']);
 end
end

end

Revise ASAP2 user template for nested structures

ASAP2 file generation of bus signals and bus parameters can result in nested C
structures and a generated ECU address with multiple levels of nesting. Changes have
been made to the ASAP2 user template asap2scalar.tlc, which is used to customize
how CHARACTERISTICs are emitted in the a2l file. If you modified a version of this
template from a previous release, incorporate minor revisions to an API and an
algorithm in your template.

R2016b

3-6

• API revision — The function ASAP2UserFcnWriteStructCharacteristic_Scalar
has added a parentName parameter.
%function ASAP2UserFcnWriteStructCharacteristic_Scalar(param, parentName) Output

parentName passes the name of the enclosing structure. When using library
functions LibASAP2GetSymbolForBusElement and
LibASAP2GetAddressForBusElement to access the symbol and address of the
CHARACTERISTIC, reference the new parameter.
%assign characteristicName = LibASAP2GetSymbolForBusElement(data,busIdx,"",parentName)
%assign characteristicAddress = LibASAP2GetAddressForBusElement(data,busIdx,"",parentName)

The third parameter, dataIdx, is omitted, because ASAP2 file generation does not
support arrays of busses in CHARACTERISTICs.

• Algorithm revision — In templates from previous releases, you could not recurse
inside a structure to add CHARACTERISTICs for nested structures. The following
line in the template guarded against recursion:
%if !LibIsStructDataType(dtId)

You can now add the following code to support recursion. Insert the code immediately
before the closing %endif statement.
%else
 %% Write out CHARACTERISTIC for child structure
 %<ASAP2UserFcnWriteStructCharacteristic_Scalar(data.StructInfo.BusElement[busIdx], parentGrpName)>

Model Data Editor for applying storage classes to Inport blocks, Outport
blocks, signals, and Data Store Memory blocks

To control the representation of individual signals and Data Store Memory blocks in the
generated code, you apply storage classes and custom storage classes. The signals and
data stores appear in the generated code as global data that you can access through your
custom code.

In R2016b, you can use the Model Data Editor to apply storage classes to these data
items. You can view and edit the items in a list that you can sort, group, and filter. Use
this technique to inspect and configure the data interface of your model at a high level.

For more information about the Model Data Editor, see Model Data Editor: Configure
model data properties using a table within the Simulink Editor. For an example, see
Design Data Interface by Configuring Inport and Outport Blocks.

 Data, Function, and File Definition

3-7

https://www.mathworks.com/help/releases/R2016b/simulink/release-notes.html#bvcwdbe-2
https://www.mathworks.com/help/releases/R2016b/simulink/release-notes.html#bvcwdbe-2
https://www.mathworks.com/help/releases/R2016b/rtw/ug/configure-data-interface-by-applying-storage-classes-to-inport-and-outport-blocks.html

Storage of lookup tables for calibration according to ASAP2 and
AUTOSAR standards

Use the new classes Simulink.LookupTable and Simulink.Breakpoint to store
table and breakpoint set data in Simulink. If you have Embedded Coder, use these
classes to prepare the data for calibration by packaging it in the generated code
according to the ASAP2 (STD_AXIS or COM_AXIS) and AUTOSAR (for example,
CURVE or MAP) standards:

• For STD_AXIS, store all of the data in a single Simulink.LookupTable object. Use
the object in an n-D Lookup Table block.

The data appear in the generated code as fields of a single structure. To control the
characteristics of the structure type, such as its name, use the properties of the object.

• For COM_AXIS, store each unique set of table data in a Simulink.LookupTable
object and each unique breakpoint vector in a Simulink.Breakpoint object. Use
each Simulink.LookupTable object in an Interpolation Using Prelookup block and
each Simulink.Breakpoint object in a Prelookup block. You can reduce memory
consumption by sharing breakpoint data between lookup tables.

Each set of table data appears in the generated code as a separate variable. Each
breakpoint vector appears as an array or, optionally, as a structure with one field to
store the breakpoint data and one field to store the length of the vector. The second
field enables you to tune the effective size of the table.

You use these classes in approximately the same way that you use the
Simulink.Parameter class. For example, you can apply storage classes and custom
storage classes. However, you can use these classes only in lookup table blocks.

Tunable Table Size

Prior to R2016b, to tune the effective size of the table in the generated code, in an n-D
Lookup Table block, you selected the parameter Support tunable table size in code
generation. When you used Prelookup and Interpolation Using Prelookup blocks, you
could not enable a tunable table size.

In R2016b, you can enable a tunable table size by using the properties of
Simulink.LookupTable and Simulink.Breakpoint objects. Therefore, you can
enable a tunable table size whether you use n-D Lookup Table blocks or Prelookup and
Interpolation Using Prelookup blocks.

R2016b

3-8

Calibration

To store lookup table data for calibration according to the ASAP2 or AUTOSAR
standards (for example, STD_AXIS, COM_AXIS, or CURVE), you can use
Simulink.LookupTable and Simulink.Breakpoint objects. However, some
limitations apply. See Simulink.LookupTable.

More explicit purpose for SimulinkGlobal storage class

Before R2016b, applying the storage class SimulinkGlobal to a signal achieved the
same effect as configuring the signal as a test point and applying the default storage
class, Auto. For example:

• If you configured multiple signals to use the same name and to use SimulinkGlobal,
the code generator mangled the name of each corresponding structure field to avoid
identifier conflicts.

• The model configuration parameter Ignore test point signals (Embedded Coder)
affected signals that used SimulinkGlobal and test points.

If you configured block states to use the same name and SimulinkGlobal, the code
generator mangled names. Data items that used SimulinkGlobal were sometimes
subject to code generation optimizations, which possibly removed the data from the code.

There was an overlap of purpose between SimulinkGlobal and test point signals due to
their similarity. The name mangling made it more difficult to access the data through
your custom code. For all kinds of data item, there was an overlap of purpose between
SimulinkGlobal and Auto.

In R2016b, SimulinkGlobal represents an explicit specification, similar to other
storage classes such as ExportedGlobal.

Compatibility Considerations

You can no longer apply the same name to multiple signals or states that use
SimulinkGlobal because the code generator no longer mangles names. Specify a unique
name for each signal and state. Correct existing models that:

• Use the Signal Properties dialog box or block dialog boxes to apply the same name to
multiple signals or states that use SimulinkGlobal.

 Data, Function, and File Definition

3-9

https://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.lookuptable-class.html

• Resolve multiple signal lines or block states to a single Simulink.Signal object that
uses the storage class SimulinkGlobal.

When you apply SimulinkGlobal to a data item, optimizations cannot eliminate the
data from the generated code. When you select Ignore test point signals, optimizations
such as the model configuration parameter Signal storage reuse do not eliminate
signals that use SimulinkGlobal.

Additional tunability support for expressions

Previously, to maintain tunability of expressions in the generated code, the data type of
workspace variables such as MATLAB variables and Simulink.Parameter objects had
to be of type double. In R2016b, you can specify any data type for these variables and
objects. If the data type of these variables and objects and the data type of the
corresponding block parameters are the same or a combination of one data type and
double, the code generator can preserve tunability.

Previously, for blocks that accessed parameter data through pointer or reference in the
generated code, you could not specify a math expression that contained workspace
variables or used a data type that required an implicit data type conversion. In R2016b,
you can specify a math expression or use a data type that is different from the data type
of the block parameter. In these cases, the code generator creates an expression that is
not addressable to perform the computation. This operation requires a data copy. For
large data sets, this data copy can potentially significantly increase RAM consumption
and slow down execution speed. For example, Lookup Table blocks often access large
vectors or matrices through pointer or reference in the generated code. For maximally
efficient code, match the data types of block parameters and workspace variables and
specify parameter expressions that are addressable. For example, the name of a single
global variable or the field of a structure is addressable.

For more information, see Block Parameter Representation in the Generated Code,
Parameter Data Types in the Generated Code, and Optimize Generated Code for Lookup
Table Blocks.

R2016b

3-10

https://www.mathworks.com/help/releases/R2016b/rtw/ug/parameters.html
https://www.mathworks.com/help/releases/R2016b/rtw/ug/generated-code-for-parameter-data-types.html
https://www.mathworks.com/help/releases/R2016b/simulink/ug/tips-to-optimize-generated-code-for-lookup-table-blocks.html
https://www.mathworks.com/help/releases/R2016b/simulink/ug/tips-to-optimize-generated-code-for-lookup-table-blocks.html

Code Generation

Data Exchange Interface: Use independent controls to configure C API,
ASAP2, and external mode

Previously, the Simulink Configuration Parameters dialog box allowed you to select only
one data exchange interface for your model – C API, ASAP2, or external mode. Selecting
a second data exchange interface required using MATLAB set_param commands, and
the command-line selections were not displayed in the Configuration Parameters dialog
box.

In R2016b, the Code Generation > Interface pane provides separate configuration
controls for each data exchange interface. You can configure what your application
requires and view the settings together. For example, you can configure the ASAP2 and
external mode data exchange interfaces together.

Standard math library changes

These changes apply to standard math library configurations:

• When you create a model or configuration set, the default standard math library
setting is ISO®/IEC 9899:1999 C (C99 (ISO)). Previously, the default standard
math library was ISO/IEC 9899:1990 C (C89/C90 (ANSI)). If you are using a
compiler that does not support ISO/IEC 9899:1999 C (C99 (ISO)), set the Standard
math library (TargetLangStandard) parameter to C89/C90 (ANSI).

 Code Generation

3-11

• The build process checks whether the specified standard math library and toolchain
are compatible. If they are not compatible, a warning occurs during code generation
and the build process continues.

• When you change the value of the Language parameter, the standard math library
updates to ISO/IEC 9899:1999 C (C99 (ISO)) for C and ISO/IEC 14882:2003 C++ (C
++03 (ISO)) for C++. Previously, you adjusted the standard math library to match
your programming language selection.

For more information, see Configure Standard Math Library for Target System and
Standard math library.

Compatibility Considerations
As of R2016b, if you create a model or open an existing model with a script that creates a
configuration set without setting the standard math library parameter
TargetLangStandard explicitly, the parameter defaults to ISO/IEC 9899:1999 C (C99
(ISO)). If the specified toolchain is not compatible with that standard math library, a
warning occurs during code generation and the build process continues. To avoid the
warning, set TargetLangStandard to a standard math library that is compatible with
your toolchain.

For more information, see Standard math library and Toolchain.

SupportVariableSizeSignals not checked against efficiency objectives
In R2016b, when the Code Generation Advisor checks your model configuration settings
against code generation efficiency objectives, it does not consider the parameter
Support: variable-size signals (SupportVariableSizeSignals).

Use default installation folder on Windows system with ReFS file
system
In previous releases, on Windows systems, the code generator relied on 8.3 name or short
file name generation to operate from the default installation folder (for example, C:
\Program Files\MATLAB\R2015b).

The Windows ReFS (Resilient File System) does not permit 8.3 name or short file name
generation. ReFS differs from Windows NTFS (New Technology File System), which–by
default–provides short file name support.

R2016b

3-12

https://www.mathworks.com/help/releases/R2016b/rtw/ug/change-the-standard-math-library.html
https://www.mathworks.com/help/releases/R2016b/rtw/ref/standard-math-library.html
https://www.mathworks.com/help/releases/R2016b/rtw/ref/standard-math-library.html
https://www.mathworks.com/help/releases/R2016b/rtw/ref/toolchain.html
https://www.mathworks.com/help/releases/R2016b/rtw/ref/support-variable-size-signals.html
https://en.wikipedia.org/wiki/ReFS
https://en.wikipedia.org/wiki/NTFS

To support the default MATLAB installation folder on Windows systems with the ReFS
file system or when NTFS short file name support is disabled, the code generation
software maps a drive corresponding to the MATLAB installation folder.

For more information, see Enable Build Process When Folder Names Have Spaces.

 Code Generation

3-13

https://www.mathworks.com/help/releases/R2016b/rtw/ug/enable-build-when-path-names-contain-spaces.html

Deployment

Simulink Coder Target Support Packages: Generate code for NXP
Freedom boards and STMicroelectronics Nucleo boards

You can use the following new support packages to generate code for the NXP Freedom
boards and the STMicroelectronics Nucleo boards.

• Simulink Coder Support Package for NXP FRDM-KL25Z Board
• Simulink Coder Support Package for NXP FRDM-K64F Board.
• Simulink Coder Support Package for STMicroelectronics Nucleo Boards User Guide

Generate code for STMicroelectronics Nucleo boards

You can use the Simulink Coder Support Package for STMicroelectronics Nucleo Boards
to generate code for these STMicroelectronics Nucleo boards:

• STM32 Nucleo F031K6
• STM32 Nucleo F103RB
• STM32 Nucleo F302R8
• STM32 Nucleo F401RE
• STM32 Nucleo L053R8
• STM32 Nucleo L476RG

You can use processor-in-the-loop (PIL) execution to verify generated code that you
deploy to all the supported Nucleo boards (except NUCLEO-F031K6 due to memory
constraint) with an Embedded Coder license. By using PIL with hardware, you can more
effectively generate code for your hardware by profiling speed and algorithm
performance.

Support for I2C and PWM blocks for FRDM-KL25Z board

You can use the I2C Master Read and I2C Master Write blocks from the Simulink Coder
Support Package for NXP™ FRDM-KL25Z Board library for reading and writing data
from and to an I2C slave device.

R2016b

3-14

https://www.mathworks.com/help/releases/R2016b/supportpkg/freedomboard/index.html
https://www.mathworks.com/help/releases/R2016b/supportpkg/freescalefrdmk64fboard/index.html
https://www.mathworks.com/help/releases/R2016b/supportpkg/nucleo/index.html

To generate square waveform on the specified output pin, use the PWM Output block
from the library.

Support for new blocks for FRDM-K64F board

From the Simulink Coder Support Package for NXP FRDM-K64F Board block library,
you can use the following blocks.

• I2C Master Read and I2C Master Write blocks for reading and writing data from and
to an I2C slave device.

• Push Button block to read the logical state of a push button.
• FXOS8700CQ 6–Axes Sensor block to measure linear acceleration and magnetic field

along the X, Y, and Z axes.

 Deployment

3-15

R2016b

3-16

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

3-17

https://www.mathworks.com/support/bugreports/

R2016a

Version: 8.10

New Features

Bug Fixes

Compatibility Considerations

4

Model Architecture and Design

Variants: Generate code for active variant choice as specified with
Variant Sink and Variant Source blocks

Previously, you used model variants and variant subsystems to make parts of a model
conditional. In R2016a, you can make parts of a model conditional without placing blocks
inside variant subsystems or model variants. A Variant Source block enables variant
choices at the source of a signal. For the Variant Source block, you can specify one or no
active input port. A Variant Sink block enables variant choices at the destination of a
signal. For the Variant Sink block, you can specify one or no active output port. During
simulation, Simulink ignores blocks that connect to inactive ports.

When you generate code, you generate code for only the active variant choice. If you use
Embedded Coder, you can generate code with preprocessor conditionals that defer the
choice of active variant until compilation time. You can also generate preprocessor
conditionals that allow for no active variant choice.

If you use Embedded Coder, see Compile-Time Variants: Generate compiler directives
(#if) for variant choices specified with Variant Source and Variant Sink blocks and
Represent Variant Source and Sink Blocks in Generated Code for more information.

Protected Model Callbacks: Define callbacks for customized protected
models

Customize the behavior of your protected model by using protected model callbacks. You
can specify code to execute when a user views, simulates, or generates code for the
protected model. If you are using a protected model, you cannot view or modify a
callback.

Callback objects specify:

• The code to execute for the callback. The code can be a string of MATLAB commands
or a script on the MATLAB path. The code can include protected model functions or
any MATLAB command that does not require loading the model. You can use the
Simulink.ProtectedModel.getCallbackInfo function in callback code to get
information on the protected model. The function provides the protected model name
and the names of submodels. If the callback is specified for 'CODEGEN' functionality

R2016a

4-2

https://www.mathworks.com/help/releases/R2016a/ecoder/release-notes.html#bu5a30o
https://www.mathworks.com/help/releases/R2016a/ecoder/release-notes.html#bu5a30o
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/represent-inline-variants-in-generated-code.html
https://www.mathworks.com/help/releases/R2016a/rtw/ref/simulink.protectedmodel.getcallbackinfo.html

and a 'Build' event, the function provides the target identifier and model code
interface type ('Top model' or 'Model reference').

• The event that triggers the callback. The event can be 'PreAccess' or 'Build'.
• The protected model functionality that the event applies to. The functionality can be

'CODEGEN', 'SIM', 'VIEW', or 'AUTO'. If you select 'AUTO', and the event is
'PreAccess', the callback is applied to each functionality. If you select 'AUTO', and
the event is 'Build', the callback is applied only to 'CODEGEN' functionality. If no
functionality is selected, the default behavior is 'AUTO'.

• The option to override the protected model build. This option applies only to
'CODEGEN' functionality.

To create a protected model with callbacks:

1 Define Simulink.ProtectedModel.Callback objects for each callback.
2 To create your protected model, call the Simulink.ModelReference.protect

function. To specify a cell array of callbacks to include in the model, use the
'Callbacks' option.

For example, to create a protected model that specifies a callback for simulation:

callbackForSim = Simulink.ProtectedModel.Callback('PreAccess', ...
'SIM', 'disp(myTestSim)')
Simulink.ModelReference.protect('myModel','Callbacks',{callbackForSim});

When you simulate the protected model, the callback is triggered before extraction of the
simulation MEX-file:

sim('myModel')

myTestSim

To create a protected model that specifies a callback for code generation:

callbackForCodeGen = Simulink.ProtectedModel.Callback('Build', ...
'CODEGEN', 'disp(myTestCodeGen)')
Simulink.ModelReference.protect('myModel', 'Mode', 'CodeGeneration',...
'Callbacks', {callbackForCodeGen});

Configure the callback to specify the override option:

callbackForCodeGen.OverrideBuild = true

 Model Architecture and Design

4-3

https://www.mathworks.com/help/releases/R2016a/rtw/ref/simulink.protectedmodel.callback-class.html
https://www.mathworks.com/help/releases/R2016a/rtw/ref/simulink.modelreference.protect.html

When you generate code for the protected model, the callback is triggered during the
build of the ERT target. The build does not occur due to the override defined in the
callback:

rtwbuild('myModel')

myTestCG

For more information, see Define Callbacks for Protected Model.

Simulink Coder Student Access: Obtain Simulink Coder as student-use
add-on product or with MATLAB Primary and Secondary School Suite

Starting with R2016a, Simulink Coder is available for purchase as an add-on product for
student-use software: MATLAB and Simulink Student Suite™ and MATLAB Student.
Student-use software provides the same tools that professional engineers and scientists
use. Students use the software to develop skills that help them excel in courses and
prepare for careers.

Starting with R2016a, Simulink Coder is included in the MATLAB Primary and
Secondary School Suite.

Model Block Virtual Buses: Interface to Model blocks by using virtual
buses, reducing data copies in the generated code

In Simulink, you can create virtual bus signals to exchange signal data between a
referenced model and the parent model. You can use a virtual bus as an input to the
Model block or as a root-level output of the referenced model.

Previously, Simulink converted the virtual bus to a nonvirtual bus. In the code that you
generated from the parent model, the parent model algorithm passed the input signal
data to the referenced model step or output function as a structure. The parent
algorithm copied the individual outputs of the upstream block calculations to the
structure fields before calling the referenced model function. Similarly, the parent
algorithm created and passed a separate structure to store the bus output of the
referenced model.

In R2016a, the models exchange the signal data through multiple variables or pointers,
each corresponding to a signal element of the bus, instead of a structure. This interface
improves the efficiency of the generated code by eliminating the memory consumption of

R2016a

4-4

https://www.mathworks.com/help/releases/R2016a/rtw/ug/define-callbacks-for-protected-model.html

the structure. The code appears and functions as it would if you used multiple signal
lines instead of a virtual bus.

For example, suppose that you created a parent model myTopModel and a referenced
model mySubModel in R2015b.

 Model Architecture and Design

4-5

R2016a

4-6

In R2015b and in R2016a, when you use a bus signal as the input to a referenced model,
you must use a Simulink.Bus object as the output data type of the Inport block in the
referenced model. Suppose that you created a bus object named myBusType in the base
workspace.

When you generated code from the parent model, the generated algorithm copied the
signal data from the Inport blocks to the fields of a local structure variable,
rtb_BusConversion_InsertedFor_M, and passed the structure to the referenced
model step function.

/* Model step function */
void myTopModel_step(void)
{
 myBusType rtb_BusConversion_InsertedFor_M;
 int32_T i;

 rtb_BusConversion_InsertedFor_M.inputOne = myTopModel_U.inputOne;

 for (i = 0; i < 6; i++) {
 rtb_BusConversion_InsertedFor_M.inputTwo[i] = myTopModel_U.inputTwo[i];
 }

 rtb_BusConversion_InsertedFor_M.inputThree = myTopModel_U.inputThree;

 mySubModel(&rtb_BusConversion_InsertedFor_M, &myTopModel_Y.Out1,
 &myTopModel_Y.Out2[0]);
}

The code is inefficient because:

• The local structure variable consumes redundant memory for storing the input signal
data, including all of the elements of the nonscalar signal inputTwo.

• Even though the referenced model algorithm does not require the signal inputThree,
the structure consumes memory for storing the field inputThree.

In R2016a, the parent model algorithm passes the signals inputOne and inputTwo to
the referenced model as individual arguments. The code does not allocate memory for a
structure variable.

void myTopModel_step(void)
{

 Model Architecture and Design

4-7

 mySubModel(&myTopModel_U.inputOne, &myTopModel_U.inputTwo[0],
 &myTopModel_Y.Out1, &myTopModel_Y.Out2[0]);
}

In general, a virtual bus is a modeling convenience that does not affect the generated
code. To package signals into a structure in the generated code, use a nonvirtual bus.

For information about changes to modeling in Simulink, including information about how
to upgrade models to R2016a, see Virtual Bus Signals Across Model Reference
Boundaries: Use virtual bus signals as inputs or outputs of a referenced model.

Compatibility Considerations

In R2015b and in R2016a, the code that you generate from a model represents root-level
input and output virtual buses as structures. In R2016a, when you generate code from a
parent model, the referenced model step or output function exchanges virtual bus
signal data by passing individual arguments instead of structures. When you use a model
as a referenced model, the generated code algorithm has a different interface than it does
when you generate code directly from the model.

For example, suppose that in the model mySubModel you set Configuration
Parameters > Code Generation > Interface > Code interface packaging to
Reusable function. In R2016a, if you generate code from mySubModel instead of
myTopModel, the generated step function uses a different interface:

extern void mySubModel_step(RT_MODEL_mySubModel_T *const mySubModel_M);

The structure type RT_MODEL_mySubModel_T contains a substructure ModelData,
which contains a substructure inputs of the type ExtU_mySubModel_T. The structure
type ExtU_mySubModel_T contains a substructure In1 of the type myBusType.

typedef struct {
 myBusType In1;
} ExtU_mySubModel_T;

To generate consistent interfaces that use structures whether you use the model as a
referenced model or as a standalone model, use nonvirtual buses instead of virtual buses.
The generated code represents the nonvirtual bus signals as structures. To use
nonvirtual buses:

• In root-level Inport block dialog boxes, select Output as nonvirtual bus.

R2016a

4-8

https://www.mathworks.com/help/releases/R2016a/simulink/release-notes.html#bu5jnrv-1
https://www.mathworks.com/help/releases/R2016a/simulink/release-notes.html#bu5jnrv-1

• In root-level Outport block dialog boxes, select Output as nonvirtual bus in parent
model.

 Model Architecture and Design

4-9

Data, Function, and File Definition

Tolerance of data type mismatch between bus elements and tunable
structure fields

In Simulink, you can use a MATLAB structure to initialize the elements of a bus signal,
or to drive a bus signal from a Constant block. Previously, if you configured the structure
to appear in the generated code as a tunable global structure, you matched the numeric
data types of the fields with those of the corresponding bus elements. If you did not
match the data types, the code generator displayed an error.

In R2016a, the generated code algorithm uses explicit typecasts to reconcile the data type
mismatches. As you create and experiment with a model, you can use default doubles to
set the structure field values, and specify data types only for the bus elements.

To improve performance and readability of the generated code by avoiding typecasts,
floating-point structure fields, and field-by-field assignment operations, match the data
types of tunable structure fields with those of the corresponding bus elements. See
Control Data Types of Initial Condition Structure Fields.

In R2016a, the Model Advisor check Check for partial structure parameter usage
with bus signals has a new name, Check structure parameter usage with bus
signals. Use this check to discover potential inefficient typecasts due to mismatched
data types. For more information, see Check structure parameter usage with bus signals.

Model Advisor check for data type mismatches between bus elements
and structure fields

In R2016a, you can generate code if the numeric data types of bus signal elements do not
match those of the corresponding fields of an initial condition structure. Previously, the
code generator displayed an error if the initial condition appeared in the code as a
tunable global structure. For more information, see “Tolerance of data type mismatch
between bus elements and tunable structure fields” on page 4-10.

The Model Advisor check Check for partial structure parameter usage with bus
signals has a new name, Check structure parameter usage with bus signals. The
check has a new programmatic ID, mathworks.design.MismatchedBusParams. Your
scripts that use the old ID still work. Consider replacing the old ID with the new ID.
Before you generate code from a model, use this check to discover potential inefficient

R2016a

4-10

https://www.mathworks.com/help/releases/R2016a/simulink/ug/buses-in-generated-code.html#buxv6qs-1
https://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink-checks_bq6d4aa-1.html#bsdg0xy-1

typecasts due to mismatched data types. For more information, see Check structure
parameter usage with bus signals.

Simplified method to apply storage classes to signals and states

Previously, you applied storage classes and custom storage classes to signals and states
by selecting a package and a storage class in the Signal Properties dialog box or on the
State Attributes tab in a block dialog box. With the default package, None, you could
select one of three built-in storage classes. You could select a package to enable custom
storage classes. For example, in the Signal Properties dialog box, you selected a package
and storage class by using the drop-down lists Package and Storage class.

If you set the package to None, you could select a storage type qualifier for the variable in
the generated code.

In R2016a, you use a simplified method to apply storage classes and custom storage
classes to signals and states. To apply storage classes, see Control Signals and States in
Code by Applying Storage Classes. To apply custom storage classes, which require an
Embedded Coder license, see Control Data Representation by Applying Custom Storage
Classes.

Storage Classes

In R2016a, the drop-down list Signal object class replaces the drop-down list Package.
The default value for this new list is Simulink.Signal, which allows you to select
storage classes and custom storage classes from the built-in package Simulink. Use the
new list to choose a different class of signal object, for example mpt.Signal. You can
then select a custom storage class that the package mpt defines.

Storage Type Qualifiers

In R2016a, if a signal or state does not already use a code generation storage type
qualifier, the option Storage type qualifier does not appear in the Signal Properties
dialog box or on the State Attributes tab in the block dialog box.

To apply storage type qualifiers, use custom storage classes and memory sections.

Embedded Signal Objects

When you upgrade a model from a previous release to R2016a, signals and states for
which you previously set Package to None and Storage class to a storage class other

 Data, Function, and File Definition

4-11

https://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink-checks_bq6d4aa-1.html#bsdg0xy-1
https://www.mathworks.com/help/releases/R2016a/simulink/slref/simulink-checks_bq6d4aa-1.html#bsdg0xy-1
https://www.mathworks.com/help/releases/R2016a/rtw/ug/signal-objects.html
https://www.mathworks.com/help/releases/R2016a/rtw/ug/signal-objects.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/apply-custom-storage-classes.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/apply-custom-storage-classes.html

than Auto acquire an embedded Simulink.Signal object. Use the functions
get_param and set_param to interact with the embedded signal object through the
programmatic parameters SignalObject (for block output ports) and
StateSignalObject (for block states).

You can also continue to use the programmatic parameters StorageClass and
StateStorageClass to apply storage classes. When you use these parameters, the new
storage class applies to the embedded signal object. You can apply a basic storage class,
such as ExportedGlobal, by writing fewer lines of code. To apply a custom storage
class, interact with the embedded signal object instead.

Compatibility Considerations
• In the Simulink Preferences dialog box, the Data Management Defaults pane no

longer appears.

For the Package option that you previously set through the Data Management
Defaults pane, the equivalent programmatic parameter DefaultDataPackage will
be removed in a future release. In R2016a, setting the parameter generates a
warning. If you wrote scripts that use this parameter, remove the parameter from the
scripts. For example, if your script contains this line of code:

set_param(0,'DefaultDataPackage','mpt')
• Unless you already set the option value in a previous release, the option Storage

type qualifier is hidden in the Signal Properties dialog box and on the State
Attributes tab in block dialog boxes.

Conflict between different storage classes applied to same signal
Previously, you could apply the storage class SimulinkGlobal to a signal line, and then
apply a storage class other than Auto to a downstream or upstream line that represented
the same signal data.

For example, suppose you applied the storage class SimulinkGlobal to a signal line
that you connected to an Outport block inside a subsystem. Outside the subsystem, you
could apply the storage class ImportedExtern to the signal line that the corresponding
output port drives. When you generated code from the model, the signal data used the
storage class ImportedExtern.

In R2016a, the model generates an error.

R2016a

4-12

Compatibility Considerations

If you open a model that you created in a previous version, the model generates an error
if you previously configured conflicting storage classes for a signal.

To resolve the error, set the storage class of the signal line from SimulinkGlobal to
Auto. The signal data uses the other storage class.

Alternatively, set the storage class from SimulinkGlobal to the other storage class. If
you later want to change the storage class for the signal data, you must remember to
change the storage classes for both signal lines.

Visibility and functionality changes for programmatic properties of data
objects

With objects of the class Simulink.CoderInfo, you can specify code generation settings
for data objects, which include objects of the classes Simulink.Parameter and
Simulink.Signal. The table summarizes changes to the programmatic properties of
Simulink.CoderInfo objects.

Behavior Change For These Properties
If you set the property StorageClass to
'Auto', these properties are hidden.
Attempting to set them to a value other
than the default value generates an error.

• Alias
• Alignment
• TypeQualifier

If you set any of these properties to a value
other than the default value, setting the
property StorageClass to 'Auto'
generates a warning. The object sets the
property value to the default value.
If you do not set the property
StorageClass to 'Custom', setting the
property CustomStorageClass to a value
other than the default value generates a
warning.

CustomStorageClass

 Data, Function, and File Definition

4-13

Compatibility Considerations

If you have scripts that set the properties of Simulink.CoderInfo objects, make sure
that the scripts do not generate unnecessary warnings or errors in R2016a. For example,
before you set the value of the property CustomStorageClass, set the value of the
property StorageClass to 'Custom'.

R2016a

4-14

Code Generation

Simplified Configuration Parameters: Configure model more easily via
streamlined code generation panes

In the Configuration Parameters dialog box, streamlined category panes display only
configuration parameters that you are most likely to use when configuring your model for
code generation.

The category panes, previously referred to as the Category view, are now available on the
Commonly Used Parameters tab. The All Parameters tab, previously referred to as
the List view, provides the complete list of parameters in the model configuration set.

Compatibility Considerations

Following are the configuration parameters that have moved to the All Parameters tab
or moved to a different pane.

Note Parameters that are removed from a pane are still available for configuration on
the All Parameters tab. To locate a parameter on this tab, use either the search box or
the Category filter.

Code Generation Pane

The following are moved to the All Parameters tab:

 Code Generation

4-15

• Ignore custom storage classes parameter
• Ignore test point signals parameter
• Validate button for Toolchain parameter

Code Generation > Interface Pane

The following parameters are moved to the All Parameters tab:

• Standard math library
• Support: non-inlined S-functions
• Multiword type definitions
• Maximum word length
• Use dynamic memory allocation for model initialization
• Classic call interface
• Single output/update function
• Terminate function required
• Combine signal/state structures
• Internal data visibility
• Internal data access
• Generate destructor
• Use dynamic memory allocation for model block instantiation
• MAT-file logging
• MAT-file variable name modifier

Code Generation > Debug Pane

The pane is removed and its parameters are moved to the All Parameters tab:

• Profile TLC
• Verbose build
• Retain .rtw file
• Enable TLC assertion
• Start TLC coverage when generating code
• Start TLC debugger when generating code

R2016a

4-16

Data Import/Export Pane

The Enable live streaming of selected signal to Simulation Data Inspector
parameter is moved to the All Parameters tab.

The following parameters are available by clicking Additional Parameters at the
bottom of the pane:

• Limit data points to last
• Decimation
• Output options
• Refine factor

Diagnostics Pane

The following parameter is moved to the All Parameters tab:

• Solver data inconsistency

Diagnostics > Data Validity Pane

The following parameters are moved to the All Parameters tab:

• Array bounds exceeded
• Model verification block enabling
• Check preactivation output of execution context
• Check runtime output of execution context
• Check undefined subsystem initial output
• Detect multiple driving blocks executing at the same time step
• Underspecified initialization detection

Diagnostics > Saving Pane

The pane is removed and its parameters are moved to the All Parameters tab:

• Block diagram contains disabled library links
• Block diagram contains parameterized library links

 Code Generation

4-17

Diagnostics > Solver Pane

The following parameters are moved to the Diagnostics > Sample Time pane:

• Sample hit time adjusting
• Unspecified inheritability of sample time

The following parameter is moved to the Diagnostics > Compatibility pane:

• SimState object from earlier release

Optimization Pane

The following parameters are moved to the All Parameters tab:

• Remove code from floating-point to integer conversions with saturation that
maps NaN to zero

• Compiler optimization level
• Verbose accelerator builds
• Implement logic signals as Boolean data (vs. double)
• Block reduction
• Conditional input branch execution
• Use memset to initialize floats and doubles to 0.0

Optimization > Signals and Parameters Pane

The following parameters are moved to the All Parameters tab:

• Signal storage reuse
• Enable local block outputs
• Reuse local block outputs
• Optimize global data access
• Reuse global block outputs
• Eliminate superfluous local variables (Expression folding)
• Simplify array indexing

Simulation Target Pane

The following parameters are moved to the All Parameters tab:

R2016a

4-18

• Echo expressions without semicolons
• Simulation target build mode
• Ensure responsiveness
• Generate typedefs for imported bus and enumeration types
• Ensure memory integrity

Simulation Target > Custom Code Pane

The pane is removed and its parameters are moved to the Simulation Target pane:

• Header file
• Initialize function
• Source file
• Terminate function
• Parse custom code symbols
• Include directories
• Libraries
• Source files
• Defines

Simulation Target > Symbols Pane

The pane is removed and its parameter is moved to the Simulation Target pane:

• Reserved names

Add macro definitions to custom code

Previously, to add macro definitions—tokens with or without values submitted on the
compiler command line—for toolchain approach builds, you directly modified the
compiler command line in Configuration Parameters > Code Generation > Build
process. In this section of the Code Generation pane, you set the Build
configuration parameter value to Specify and added macro definitions to the compiler
options. With the new Configuration Parameters > Code Generation > Custom
Code > Additional Build Information > Defines parameter, you can add these
definitions independent of the toolchain selection. This parameter applies for toolchain
approach builds and template makefile approach builds.

 Code Generation

4-19

The new Defines parameter lets you add a list of macro definitions to the compiler
command line. Specify the parameters with a space-separated list of macro definitions. If
a makefile is generated, these macro definitions are added to the compiler command line
in the makefile. The list can include simple definitions (for example, -DDEF1), definitions
with a value (for example, -DDEF2=1), and definitions with a space in the value (for
example, -DDEF3="my value"). Definitions can omit the -D (for example, -DFOO=1 and
FOO=1 are equivalent). If the toolchain uses a different flag for definitions, the code
generator overrides the -D and uses the appropriate flag for the toolchain.

For more information, see Code Generation Pane: Custom Code: Additional Build
Information: Defines.

Faster generated code for linear algebra in the MATLAB Function block

To improve the simulation speed of MATLAB Function block algorithms that call certain
linear algebra functions, the simulation software can call LAPACK functions. In R2016a,
if you use Simulink Coder to generate C/C++ code for these algorithms, you can specify
that the code generator produce LAPACK function calls. If you specify that you want to
generate LAPACK function calls, and the input arrays for the linear algebra functions
meet certain criteria, the code generator produces calls to relevant LAPACK functions.
The code generator uses the LAPACKE C interface.

LAPACK is a software library for numerical linear algebra. MATLAB uses this library in
some linear algebra functions, such as eig and svd. Simulink uses the LAPACK library
that is included with MATLAB. Simulink Coder uses the LAPACK library that you
specify. If you do not specify a LAPACK library, the code generator produces code for the
linear algebra function instead of generating a LAPACK call.

To specify that you want to generate LAPACK function calls and link to a specific
LAPACK library, see Speed Up Linear Algebra in Code Generated from a MATLAB
Function Block.

Build button removed from Configuration Parameters dialog box

The Build / Generate Code button is no longer available on the Code Generation
pane in the Configuration Parameters dialog box.

R2016a

4-20

https://www.mathworks.com/help/releases/R2016a/rtw/ref/code-generation-pane-custom-code.html#bu3790z-1
https://www.mathworks.com/help/releases/R2016a/rtw/ref/code-generation-pane-custom-code.html#bu3790z-1
http://www.netlib.org/lapack
https://www.mathworks.com/help/releases/R2016a/rtw/ug/speed-up-linear-algebra-in-code-generated-from-the-matlab-function-block.html
https://www.mathworks.com/help/releases/R2016a/rtw/ug/speed-up-linear-algebra-in-code-generated-from-the-matlab-function-block.html

Compatibility Considerations

To initiate code generation and the build process, press Ctrl-B or, on the Simulink Editor
toolbar, click the Build Model icon.

 Code Generation

4-21

Deployment

Hardware implementation parameters enabled by default

In R2016a, the Enable hardware specification button is removed from the
Configuration Parameters > Hardware Implementation pane. By default, the
parameters on the pane are enabled.

Simulink Coder Support Package for ARM Cortex-Based VEX
Microcontroller

From R2016a, you can use the Simulink Coder Support Package for ARM® Cortex®-
Based VEX® Microcontroller to generate, build, and deploy code to the VEX
microcontroller. This support package was earlier called Simulink Support Package for
ARM Cortex-based VEX Microcontroller from its inception in R2014a until R2015b.
However, you can use this support package on Embedded Coder to use some of the
Embedded Coder features.

See Install Support for Simulink Coder Support Package for ARM Cortex-based VEX
Microcontroller.

For more information, see ARM Cortex-Based VEX Microcontroller.

R2016a

4-22

https://www.mathworks.com/help/releases/R2016a/supportpkg/armcortexbasedvexmicrocontroller/ug/install-support-for-arm-cortex-based-vex-microcontroller.html
https://www.mathworks.com/help/releases/R2016a/supportpkg/armcortexbasedvexmicrocontroller/ug/install-support-for-arm-cortex-based-vex-microcontroller.html
https://www.mathworks.com/help/releases/R2016a/supportpkg/armcortexbasedvexmicrocontroller/

Performance

Removal of Minimize data copies between local and global variables
parameter

In R2016a, there is no longer a Minimize data copies between local and global
variables parameter. The code generator now generates code as if this parameter is set
to off. To fine-tune this setting with an Embedded Coder license, use the Optimize
global data access parameter. For more information, see Optimize Global Variable
Usage.

Previously, in the Configuration Parameters dialog box, this parameter was on the
Optimization > Signals and Parameters pane.

 Performance

4-23

https://www.mathworks.com/help/releases/R2016a/ecoder/ug/optimize-global-variable-usage.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/optimize-global-variable-usage.html

R2016a

4-24

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

4-25

https://www.mathworks.com/support/bugreports/

R2015aSP1

Version: 8.8.1

Bug Fixes

5

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

R2015aSP1

5-2

https://www.mathworks.com/support/bugreports/

R2015b

Version: 8.9

New Features

Bug Fixes

Compatibility Considerations

6

Model Architecture and Design

Support for C++ code generation in protected models
In R2015b, you can create a protected model that supports C++ code generation.
Protected models that support C++ are subject to the same requirements as previously
supported protected models.

Reusable code for subsystems containing Stateflow charts
In R2015b, you can generate reusable code for a subsystem that contains a Stateflow
chart or is a Stateflow chart. For the subsystem, the code generator creates a standalone
function in the shared utilities folder. The generated code of multiple reference models
can then call this function. You cannot create shared code for subsystems or Stateflow
charts that use machine-parented data, import or export graphical functions, or contain
atomic subcharts.

This enhancement reduces code size and ROM consumption. For more information, see
Code Reuse For Subsystems Shared Across Models.

Header file change for model containing messages in Stateflow charts
In R2015b, if your model contains one or more Stateflow charts that use messages to
communicate within or between Stateflow charts, the code generator creates a
builtin_typeid_types.h file. For more information, see Header Dependencies When
Interfacing Legacy/Custom Code with Generated Code. For more information on
messages, see How Messages Work in Stateflow Charts.

Type definitions in rapid accelerator mode
Previously, if you ran a model containing Stateflow and MATLAB function blocks in
rapid accelerator mode, you could include a header file in the Custom Code pane. The
header file contained your own definitions of enumerated, bus, or alias data types.

In R2015b, to get compilable code in rapid accelerator mode, you must use the code
generator definitions. You cannot include a header file with your own type definitions. To
use the code generator definitions, open the Configuration Parameters dialog box. On the
Simulation Target pane, select Generate typedefs for imported bus and
enumeration types.

R2015b

6-2

https://www.mathworks.com/help/releases/R2015b/rtw/ug/code-generation-of-reusable-library-subsystem.html
https://www.mathworks.com/help/releases/R2015b/rtw/ug/generated-source-files-and-file-dependencies.html#f1159187
https://www.mathworks.com/help/releases/R2015b/rtw/ug/generated-source-files-and-file-dependencies.html#f1159187
https://www.mathworks.com/help/releases/R2015b/stateflow/ug/how-messages-work-in-stateflow-charts.html

You can continue to include a header file with your own definitions of enumerated, bus,
or alias data types for use in normal and accelerator simulation modes.

 Model Architecture and Design

6-3

Data, Function, and File Definition

Configuration parameter Inline parameters name and functionality
change

The configuration parameter Optimization > Signals and Parameters > Inline
parameters has a new name, Default parameter behavior. Previously, Inline
parameters was a check box. In R2015b, Default parameter behavior is a drop-down
list.

At the command prompt, use the name DefaultParameterBehavior to access the
configuration parameter Default parameter behavior. Your scripts that use the
names InlineParameters and InlineParams still work.

These tables compare the settings for the original parameter name, Inline parameters,
with the settings for the new parameter name, Default parameter behavior.

In the Configuration Parameters Dialog Box

Inline parameters Default parameter behavior
Selected Inlined
Cleared Tunable
At the Command Prompt

InlineParameters DefaultParameterBehavior
'on' 'Inlined'
'off' 'Tunable'

Previously, constant folding eliminated the code that represented blocks that used
constant sample time. If the code generator could not fold the block code, or if you
selected settings to disable constant folding, the block code appeared in the model
initialization function. However, if the parameters of a block were tunable, the block in
the model did not use constant sample time. The block code instead appeared in the
model step or output functions. Therefore, constant sample time indicated the block
code placement.

In R2015b, constant sample time does not directly indicate block code placement. Block
parameters are tunable during simulation regardless of the setting of Default

R2015b

6-4

parameter behavior. You can still control block parameter tunability in the generated
code by adjusting the setting for Default parameter behavior and by applying storage
classes to parameter data objects. The placement of code for blocks that have constant
output values still depends on the tunability of the block parameters in the generated
code. However, these blocks use constant sample time in the model regardless of
parameter tunability.

When you use the configuration parameter Code Generation > System target file to
switch to an ERT-based code generation target from a target that is not ERT-based, the
setting for Default parameter behavior switches from Tunable to Inlined. If
necessary, you can then specify the parameter as Tunable.

Compatibility Considerations

If you use scripts that change code generation targets, confirm that the scripts do not
alter the setting for Default parameter behavior.

 Data, Function, and File Definition

6-5

Code Generation

MinGW-w64 Compiler Support: Compile MEX files on 64-bit Windows
with free compiler

You can now use the MinGW-w64 compiler from TDM-GCC to build model code on 64-bit
Windows® hosts. To download and install the compiler, see Install MinGW-w64
Compiler.

If you select a code generation target that supports toolchain controls, such as grt.tlc
or ert.tlc, your model builds can use a MinGW compiler toolchain. Select the toolchain
on the Code Generation pane in the Configuration Parameters dialog box.

Internationalization: Generate and review code containing mixed
languages for different locales

In R2015b, the code generator introduces support for non-US-ASCII characters in
compilable portions of generated source code. The code generator processes strings
without loss of information or character corruption by replacing unrepresented
characters of the user default encoding with an escape sequence of the form ode-

R2015b

6-6

https://www.mathworks.com/help/releases/R2015b/matlab/matlab_external/install-mingw-support-package.html
https://www.mathworks.com/help/releases/R2015b/matlab/matlab_external/install-mingw-support-package.html

unit;. code-unit is the hexadecimal value for the unrepresented character. For
example, the code generator replaces the Japanese full-width Katakana letter ア with the
escape sequence ア. Cases where escape sequence replacements occur include:

• Strings representing model parameters, block names, and signal names that appear
in generated code comments.

• Output variables representing signal names and block names on block paths logged to
MAT- files.

• Variables representing block names on block paths logged to C API files
model_capi.c (or .cpp) and model_capi.h.

When generating HTML code reports, the code generator converts replacement character
escape sequences with original strings.

An exception to the character escape sequence replacement scheme is variables and
function names in Target Language Compiler (.tlc) files. These files support user
default encoding only. To use the compiler to produce international custom generated
code that is portable, use the 7-bit ASCII character set when naming variables and
functions.

For more information, see Internationalization and Code Generation.

Hardware Implementation Selection: Quickly generate code for popular
embedded processors

Specification of hardware configurations has been simplified. Top-level Configuration
Parameters dialog box panes, Run on Target Hardware and Coder Target, have been
removed. Parameters previously available on those panes now appear on the Hardware
Implementation pane. A parameter has also moved from the Code Generation pane
to the Hardware Implementation pane.

This list summarizes the R2015b changes and new behavior:

• By default, the Hardware Implementation pane lists Hardware board, Device
vendor, and Device type parameter fields only.

• If you use Simulink without a Simulink Coder license, initially parameters on the
Hardware Implementation pane are disabled. To enable them, click Enable
hardware specification. The parameters remain enabled for the current MATLAB
session.

 Code Generation

6-7

https://www.mathworks.com/help/releases/R2015b/rtw/ug/international-character-support.html

• By default, the Hardware board list includes: None or Determine by Code
Generation system target file, and Get Hardware Support Packages.
After installing a hardware support package, the list also includes corresponding
hardware board names.

• If you select a hardware board name, parameters for that board appear in the dialog
box display.

• Lists for the Device vendor and Device type parameters have been updated to
reflect hardware that is available on the market. The default Device vendor and
Device type are Intel and x86-64 (Windows64), respectively.

• If Simulink Coder is installed, the revised Hardware Implementation pane
identifies the system target file that you selected on the Code Generation pane.

• A Device details option provides a way to display parameters for setting details such
as number of bits and byte ordering.

• To specify target hardware for a Simulink support package, select a value from
Configuration Parameters > Hardware Implementation > Hardware board.
Before R2015b, you selected Tools > Run on Target Hardware > Prepare to run.
Then, you selected a value from Configuration Parameters > Run on Target
Hardware > Target hardware.

• To specify target hardware for an Embedded Coder support package, select a value
from Configuration Parameters > Hardware Implementation > Hardware
board. Before R2015b, you selected a value from Configuration Parameters >
Code Generation > Target hardware.

• The Test hardware section was removed. Configure test hardware from the
Configuration Parameters list view. Set ProdEqTarget to off, which enables
parameters for configuring test hardware details.

• If you set Configuration Parameters > Code Generation > System target file to
ert.tlc, realtime.tlc, or autosar.tlc, the default setting for Configuration
Parameters > Hardware Implementation > Hardware board is None. If you set
System target file to value other than ert.tlc, autosar.tlc, or realtime.tlc,
the default setting for Hardware board is Determine by Code Generation
system target file.

For more information, see Hardware Implementation Pane.

Compatibility Considerations
Starting in R2015b:

R2015b

6-8

https://www.mathworks.com/help/releases/R2015b/simulink/gui/hardware-implementation-pane.html

• By default, the Hardware Implementation pane lists Hardware board, Device
vendor, and Device type parameter fields only. To view parameters for setting
details, such as number of bits and byte ordering, click Device details.

• The following devices appear on the Hardware Implementation pane only for
models that you create with a version of the software earlier than R2015b. These
devices are considered legacy devices.

Generic, 32-bit Embedded Processor
Generic, 64-bit Embedded Processor (LP64)
Generic, 64-bit Embedded Processor (LLP64)
Generic, 16-bit Embedded Processor
Generic, 8-bit Embedded Processor
Generic, 32-bit Real-Time Simulator
Generic, 32-bit x86 compatible
Intel, 8051 Compatible
Intel, x86–64
SGI, UltraSPARC Iii

In R2015b, if you open a model configured for a legacy device and change the Device
type setting, you cannot select the legacy device again.

• Device parameter Signed integer division rounds to is set to Zero instead of
Undefined. For some cases, numerical differences can occur in results produced with
Zero versus Undefined for simulation and code generation.

This change does not apply to legacy devices.
• To associate a new model with an existing configuration set that has the following

characteristics, configure the model to use the same hardware device as the existing
model.

• The model consists of a model reference hierarchy. Models in the hierarchy use
different configuration sets.

• The existing configuration set was saved as a script and associated with a
configuration set variable.

If the code generator detects differences in device parameter settings, a consistency
error occurs. To correct the condition, look for differences in the device parameter
settings, and make the appropriate adjustments.

 Code Generation

6-9

Smarter Code Regeneration: Regenerate code only when model
settings that impact code are modified
Selecting the model option Configuration Parameters > Code Generation >
Generate code only configures the model build process to generate code, without
compiling and building the generated code. R2015b provides more intuitive and flexible
behavior for the Generate code only option. In R2015b:

• Toggling the Generate code only option on or off between builds no longer forces
regeneration of source code. For example, suppose that you clear Generate code
only after generating code, and make no other model change that affects code
generation. The next build detects that up-to-date source code is already available
and compiles the code without regenerating it.

• In a model reference hierarchy, the Generate code only setting of the top model
overrides the Generate code only setting of referenced models. This change relaxes
the constraint that the Generate code only setting must be consistent within a
model reference hierarchy. The change helps prevent unnecessary regeneration of
referenced model code.

• If you have an Embedded Coder license, running a software-in-the-loop (SIL) or
processor-in-the-loop (PIL) simulation for a top model or Model block no longer
requires that you clear Generate code only. See Embedded Coder release note
Removal of Generate code only parameter restriction.

Toolchain approach with custom targets added
You can configure properties of a custom target such that the system target file is
toolchain-compliant. When you select a toolchain-compliant STF from the Code
Generation pane in the Configuration Parameters dialog box, the software recognizes
toolchain compliance and provides the build process controls for the toolchain approach.

Previously, it was not possible to define toolchain compliance for custom targets. You had
to use the template makefile approach to build using production targets. With toolchain
approach support for custom targets, you can generate code using the toolchain approach
throughout your development process from model architecture through verification.

Build configuration setting can affect setting for toolchain
When using the toolchain approach to build a model, you can configure the code
generator to use a specific toolchain and build configuration. On the Configuration

R2015b

6-10

https://www.mathworks.com/help/releases/R2015b/ecoder/release-notes.html#buvtgt0

Parameters dialog box, you can set values for Code Generation > Toolchain and Code
Generation > Build configuration.

As of R2015b, a change to the Build configuration setting can affect the setting for
Toolchain.

• Changing the Build configuration from any value to Specify, changes the default
Toolchain value (Automatically locate an installed toolchain) to the
value of the toolchain that was automatically located. For example, the value changes
from Automatically locate an installed toolchain to Microsoft Visual
C++ 2012 v11.0 |(64-bit Windows).

• Changing the Build configuration from Specify to any other value has no effect on
the Toolchain value.

This operation improvement synchronizes the Toolchain setting with the setting for
Build configuration.

 Code Generation

6-11

Deployment

External mode MEX-file build requires sl_services library

As of R2015b, the mex commands to rebuild MEX-file modules for external mode
communication require linking the sl_services library. Examples of external mode
communication modules include TCP/IP module ext_comm and serial module
ext_serial_win32_comm.

Compatibility Considerations

You must update existing scripts for external mode MEX-file builds to link the
sl_services library. For Windows, add -lsl_services. For Linux® or Mac, add -
lmwsl_services. For example, here is an updated Windows command to build
ext_comm, with the library addition in bold.
>> cd (matlabroot)
>> mex -setup
>> mex toolbox\coder\simulinkcoder_core\ext_mode\host\common\ext_comm.c ...
toolbox\coder\simulinkcoder_core\ext_mode\host\common\ext_convert.c ...
toolbox\coder\simulinkcoder_core\ext_mode\host\common\rtiostream_interface.c ...
toolbox\coder\simulinkcoder_core\ext_mode\host\common\ext_util.c ...
-Irtw\c\src -Irtw\c\src\rtiostream\utils ...
-Irtw\c\src\ext_mode\common ...
-Itoolbox\coder\simulinkcoder_core\ext_mode\host\common ...
-Itoolbox\coder\simulinkcoder_core\ext_mode\host\common\include ...
-lmwrtiostreamutils -lsl_services ...
-DEXTMODE_TCPIP_TRANSPORT ...
-DSL_EXT_DLL -output toolbox\coder\simulinkcoder_core\ext_comm

For more information, see MATLAB Commands to Rebuild ext_comm and
ext_serial_win32 MEX-Files.

R2015b

6-12

https://www.mathworks.com/help/releases/R2015b/rtw/ug/creating-a-tcp-ip-transport-layer-for-external-communication.html#brk9sf2-1
https://www.mathworks.com/help/releases/R2015b/rtw/ug/creating-a-tcp-ip-transport-layer-for-external-communication.html#brk9sf2-1

Performance

Consolidation of redundant if-else and for statements in separate code
regions

Previously, the code generator tried to combine adjacent if-else and for statements
that shared the same condition. In R2015b, this optimization extends to if-else and
for statements located in separate, noninterfering regions of the generated code. This
enhancement results in:

• Reduced data copies, code size, and RAM consumption.
• Less complex code.
• Improved execution speed.

Consider the following Enabled Subsystem block named S4. This subsystem contains
three Switch blocks named Switch 1, Switch 2, and Switch 3.

 Performance

6-13

In R2015a, the code generator produced the following code:

void IfElseWithState_R2015a_step(void)
{
 real32_T rtb_sigMin;

R2015b

6-14

 if (enable) {
 if (stsw_off) {
 rtb_sigMin = sig;
 } else {
 rtb_sigMin = IfElseWithState_R2015a_DW.UnitDelay1_DSTATE;
 }

 sigMin = rtb_sigMin + rtb_sigMin;
 if (stsw_off) {
 sigMax = sig;
 otherSigCapture = otherSig;
 } else {
 sigMax = IfElseWithState_R2015a_DW.UnitDelay_DSTATE;
 otherSigCapture = IfElseWithState_R2015a_DW.UnitDelay2_DSTATE;
 }

 IfElseWithState_R2015a_DW.UnitDelay1_DSTATE = rtb_sigMin;
 IfElseWithState_R2015a_DW.UnitDelay_DSTATE = sigMax;
 IfElseWithState_R2015a_DW.UnitDelay2_DSTATE = otherSigCapture;
 }
}

In R2015b, the code generator produces the following code:

 void IfElseWithState_step(void)
{
 real32_T rtb_sigMin;
 if (enable) {
 if (stsw_off) {
 rtb_sigMin = sig;
 sigMax = sig;
 otherSigCapture = otherSig;
 } else {
 rtb_sigMin = IfElseWithState_DW.UnitDelay1_DSTATE;
 sigMax = IfElseWithState_DW.UnitDelay_DSTATE;
 otherSigCapture = IfElseWithState_DW.UnitDelay2_DSTATE;
 }

 sigMin = rtb_sigMin + rtb_sigMin;
 IfElseWithState_DW.UnitDelay1_DSTATE = rtb_sigMin;
 IfElseWithState_DW.UnitDelay_DSTATE = sigMax;
 IfElseWithState_DW.UnitDelay2_DSTATE = otherSigCapture;
 }
}

 Performance

6-15

In R2015a, the generated code contained two if-else statements because of the sum
operation that followed Switch 1. In R2015b, there is one if-else statement for all
three Switch blocks. The code generator combines the if-else statements because they
share the same condition. The outcome of the addition operation has no effect on this
condition.

More efficient code for multirate models

Previously, if a referenced model or atomic subsystem contained blocks that executed at
different sample times, the code generator produced separate output and update
functions for each sample time. In R2015b, for each sample time, the code generator
produces one output and update function. This optimization increases execution speed
and conserves RAM and ROM consumption.

Consider the following model named mTopMultiRateMultiTasking. This model
contains a referenced model, mSubMultiRateMultiTasking, that executes at two
different sample times.

R2015b

6-16

In R2015a, for mSubMultiRateMultiTasking, the code generator produced this code:

void mSubMultiRateMultiTaskingTID0(const real_T *rtu_In1, real_T *rty_Out1,
 B_mSubMultiRateMultiTasking_c_T *localB, DW_mSubMultiRateMultiTaskin_f_T
 *localDW)
{
 int_T tid = 0;
 *rty_Out1 = localDW->Delay_DSTATE;
 if (rtmIsSpecialSampleHit(1, 0, tid)) {
 localB->RateTransition = localDW->RateTransition_Buffer0;
 }

 localB->Sum = *rtu_In1 * localB->RateTransition + *rty_Out1;
 (void) (tid);
}

void mSubMultiRateMultiTaskingTID1(const real_T *rtu_In2,
 B_mSubMultiRateMultiTasking_c_T *localB)
{
 int_T tid = 1;
 localB->Gain = 5.0 * *rtu_In2;
 (void) (tid);
}

void mSubMultiRateMultiTa_UpdateTID0(B_mSubMultiRateMultiTasking_c_T *localB,
 DW_mSubMultiRateMultiTaskin_f_T *localDW)
{
 localDW->Delay_DSTATE = localB->Sum;

 Performance

6-17

}

void mSubMultiRateMultiTa_UpdateTID1(B_mSubMultiRateMultiTasking_c_T *localB,
 DW_mSubMultiRateMultiTaskin_f_T *localDW)
{
 localDW->RateTransition_Buffer0 = localB->Gain;
}

In R2015a, the generated code contains four function calls. The first two functions
produce the output at each sample time (tid=0 and tid=1). The second two functions
update the tasks at each sample time.

In R2015b, for mSubMultiRateMultiTasking, the code generator produces this code:

void mSubMultiRateMultiTaskingTID0(const real_T *rtu_In1, real_T *rty_Out1,
 B_mSubMultiRateMultiTasking_c_T *localB, DW_mSubMultiRateMultiTaskin_f_T
 *localDW)
{
 int_T tid = 0;
 *rty_Out1 = localDW->Delay_DSTATE;
 if (rtmIsSpecialSampleHit(1, 0, tid)) {
 localB->RateTransition = localDW->RateTransition_Buffer0;
 }

 localDW->Delay_DSTATE = *rtu_In1 * localB->RateTransition + *rty_Out1;
 (void) (tid);
}

void mSubMultiRateMultiTaskingTID1(const real_T *rtu_In2,
 DW_mSubMultiRateMultiTaskin_f_T *localDW)
{
 int_T tid = 1;
 real_T rtb_Gain;
 rtb_Gain = 5.0 * *rtu_In2;
 localDW->RateTransition_Buffer0 = rtb_Gain;
 (void) (tid);
}

In R2015b, the generated code contains two function calls. For each sample time, there is
one function producing output and updating tasks. If mTopMultiRateMultiTasking is
an atomic subsystem instead of a referenced model, a similar enhancement to the
generated code from R2015a to R2015b occurs.

R2015b

6-18

If you have a Simulink Code Inspector™ license, this optimization enables code
inspection for a subset of multirate models. For more information on how Simulink Code
Inspector supports multirate models, see Code inspection for multiple rate modeling
including top models and Rate Transition blocks.

 Performance

6-19

https://www.mathworks.com/help/releases/R2015b/slci/release-notes.html#buvtjsx-1
https://www.mathworks.com/help/releases/R2015b/slci/release-notes.html#buvtjsx-1

R2015b

6-20

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

6-21

https://www.mathworks.com/support/bugreports/

R2015a

Version: 8.8

New Features

Bug Fixes

Compatibility Considerations

7

Model Architecture and Design

Command-line APIs for protected models

Previously, protected models supported only a single system target. In R2015a, using
new command-line APIs, you can create a protected model that supports code generation
for multiple system targets.

If you create a protected model that supports multiple targets, create the protected model
with the Modifiable option using the Simulink.ModelReference.protect function.
Once you have this modifiable protected model, you can manage the targets it supports
using the following new functions:

• Simulink.ProtectedModel.addTarget
• Simulink.ProtectedModel.removeTarget
• Simulink.ProtectedModel.getSupportedTargets
• Simulink.ProtectedModel.getCurrentTarget
• Simulink.ProtectedModel.setCurrentTarget
• Simulink.ProtectedModel.getConfigSet

For more information on creating a multi-target protected model, see Create a Protected
Model with Multiple Targets.

If you are using a protected model that supports multiple targets, the new APIs allow
you to:

• Get a list of supported targets using
Simulink.ProtectedModel.getSupportedTargets. This information is also
available in the protected model report.

• Get the configuration set for your target using
Simulink.ProtectedModel.getConfigSet. With this information, you can verify
that your interface is compatible with the protected model.

When generating code for your protected model, the build process selects the appropriate
target.

For more information on using a multi-target protected model, see Use a Protected Model
with Multiple Targets.

R2015a

7-2

https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.modelreference.protect.html
https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.protectedmodel.addtarget.html
https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.protectedmodel.removetarget.html
https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.protectedmodel.getsupportedtargets.html
https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.protectedmodel.getcurrenttarget.html
https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.protectedmodel.setcurrenttarget.html
https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.protectedmodel.getconfigset.html
https://www.mathworks.com/help/releases/R2015a/rtw/ug/create-a-protected-model-with-multiple-targets.html
https://www.mathworks.com/help/releases/R2015a/rtw/ug/create-a-protected-model-with-multiple-targets.html
https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.protectedmodel.getsupportedtargets.html
https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.protectedmodel.getconfigset.html
https://www.mathworks.com/help/releases/R2015a/rtw/ug/use-a-protected-model-with-multiple-targets.html
https://www.mathworks.com/help/releases/R2015a/rtw/ug/use-a-protected-model-with-multiple-targets.html

Improved use of workers for faster parallel builds

In R2015a, parallel builds of model reference hierarchies use an enhanced scheduling
algorithm that potentially improves worker allocation and processor core use. For models
containing large model reference hierarchies, the new algorithm might speed up
Simulink diagram updates and Simulink Coder builds. For more information, see Reduce
Update Time for Referenced Models and Reduce Build Time for Referenced Models.

Usability enhancements for protected models

Open support for protected models

Previously, to inspect a protected model, you referenced it in a model block, and then
right-clicked in the model block and selected Display report or Display Web view
from the context menu.

In R2015a, it is easier to inspect these models. You can access the Web view or the report
for your protected model by using one of the following methods:

• Use the Simulink.ProtectedModel.open function. Calling this function with only
the protected model name opens the model according to the following rules. Or you
can choose how to view the model by specifying 'webview' or 'report' as the
second argument. For example, to display the Web view for protected model
sldemo_mdlref_counter, you can call:

Simulink.ProtectedModel.open('sldemo_mdlref_counter', 'webview');
• Double-click the .slxp protected model file in the Current Folder browser.
• In the Block Parameter dialog box for the protected model, click Open Model.

Unless you have selected a specific option using the Simulink.ProtectedModel.open
function, each of these methods first tries to open the Web view. If the Web view is not
enabled for the protected model, the software then tries to open the report. If you did not
create a report, the software reports an error.

Protected model support for Rapid Accelerator mode

In R2015a, top models that reference protected models can be simulated in Rapid
Accelerator mode.

 Model Architecture and Design

7-3

https://www.mathworks.com/help/releases/R2015a/simulink/ug/model-reference-simulation-targets.html#bsh0cmy-1
https://www.mathworks.com/help/releases/R2015a/simulink/ug/model-reference-simulation-targets.html#bsh0cmy-1
https://www.mathworks.com/help/releases/R2015a/rtw/ug/program-builds.html#br2mrkl-1
https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.protectedmodel.open.html
https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.protectedmodel.open.html

Platform independence for protected model Web view

In R2015a, the Web view for a protected model is independent of the platform. You can
view it on platforms other than the platform for which you created the protected model.

No code reuse for function-call subsystems with mask parameters

When you use multiple identical instances of a function-call subsystem in a model, the
code generator does not create a reusable function if both of these conditions are true:

1 You clear the model configuration parameter Inline parameters.
2 You use a mask parameter of any kind in any of the subsystem instances.

Under these conditions, the code generator creates a unique function to represent each
instance of the subsystem instead of a single reusable function.

Compatibility Considerations

Previously, if you generated code using a model that satisfied the preceding conditions,
the code generator created a single reusable function to represent the subsystems.

In R2015a, the code generator creates a unique function for each subsystem instance,
increasing code size and reducing readability. However, the code produces the same
numerical results.

R2015a

7-4

7-5

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

R2015a

7-6

https://www.mathworks.com/support/bugreports/

R2014b

Version: 8.7

New Features

Bug Fixes

Compatibility Considerations

8

Model Architecture and Design

Code generation for Simulink Function and Function Caller blocks
Simulink Coder supports code generation for the Simulink Function and Function Caller
blocks. These blocks allow you to:

• Define a function implementation, which can be invoked by a function caller or a
Stateflow chart

• Call a function implementation to compute outputs

For more information, see the Simulink Function and Function Caller block reference
pages.

You can use the blocks to model client-server communication. For example, using
Embedded Coder, you can model AUTOSAR clients and servers for simulation and code
generation. For more information, see Client-Server Interface in the Embedded Coder
AUTOSAR documentation.

Option to suppress generation of shared constants
You can choose whether or not the code generator produces shared constants and shared
functions. You can change this parameter programmatically using the parameter
GenerateSharedConstants with set_param and get_param.

For more information, see Shared Constant Parameters for Code Reuse.

Usability enhancements for protected models
In R2014b, the following features enhance the usability of protected models:

• Previously, you created a protected model only from a command-line API or from the
context menu of a model reference block. In R2014b, from the Simulink Editor menu
bar, you can select File > Export Model To > Protected Model to create a
protected model from the current model. For more information on protecting a model,
see Protect a Referenced Model.

• Previously, to update the configuration options for a protected model, you deleted the
current protected model and recreated it with the new options. In R2014b, using the
Modifiable option for Simulink.ModelReference.protect, you can create a

R2014b

8-2

https://www.mathworks.com/help/releases/R2014b/simulink/slref/simulinkfunction.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/functioncaller.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar-communication.html#bsa24_3-7
https://www.mathworks.com/help/releases/R2014b/rtw/ug/code-generation-of-shared-constant-parameters-for-code-reuse.html
https://www.mathworks.com/help/releases/R2014b/rtw/ug/creating-a-protected-model.html
https://www.mathworks.com/help/releases/R2014b/rtw/ref/simulink.modelreference.protect.html

protected model that is modifiable by an authorized user. An authorized user can then
use the Simulink.ModelReference.modifyProtectedModel and the
Simulink.ModelReference.ProtectedModel.setPasswordForModify
functions to update the options for the protected model and provide a password for
authorization.

• The protected model report provides more information. For each possible functionality
that the protected model can support, the Supported functionality section reports
On, Off, or On with password protection. The new Licenses required section
lists all licenses required to run the protected model. For more information on the
protected model report, see Protected Model Report.

• The read-only view functionality for protected models now uses the model Web view
features introduced in R2014a. For more information on the Web view, see the
Simulink Report Generator documentation.

 Model Architecture and Design

8-3

https://www.mathworks.com/help/releases/R2014b/rtw/ref/simulink.modelreference.modifyprotectedmodel.html
https://www.mathworks.com/help/releases/R2014b/rtw/ref/simulink.modelreference.protectedmodel.setpasswordformodify.html
https://www.mathworks.com/help/releases/R2014b/rtw/ug/generate-a-protected-model-report.html

Data, Function, and File Definition

Enumerated data type size control

You can reduce ROM/RAM usage, improve the portability of generated code, and improve
integration with legacy code by specifying the size for enumerated data types. The code
generator uses the super class that you define for the enumeration to specify the data
type size in the generated code.

For example, the code generator uses this class definition:

classdef Colors
int8
 enumeration
 Red(0)
 Green(1)
 Blue(2)
 end
end

to generate this code:

typedef int8_T Colors;

#define Red ((Colors)0)
#define Green ((Colors)1)
#define Blue ((Colors)2)

For more information, see Enumerations.

Vector and matrix expressions as model argument values

You can now provide a vector or matrix expression as a model argument for a Model
block. You can generate code for a model that contains a referenced model where the
Model argument values (for this instance) parameter takes a vector or matrix
expression.

R2014b

8-4

https://www.mathworks.com/help/releases/R2014b/rtw/ug/enumerations.html

Code Generation

Option to separate output and update functions for GRT targets

The software supports the Single output/update function
(CombineOutputUpdateFcns) configuration parameter for Generic Real-Time
(grt.tlc) targets.

If you clear the Configuration Parameters > Code Generation > Interface > Single
output/update function check box, the software generates output and update function
code for your model blocks as separate model_output and model_update functions. If
you select the check box, the software generates the output and update function code as a
single model_step function. For more information, see Single output/update function.

Previously, for Generic Real-Time targets, the software generated code as a single
function. Support for the Single output/update function parameter was available only
for Embedded Coder (ert.tlc) targets.

Highlighted configuration parameters from Code Generation Advisor
reports

When you click a link to a configuration parameter from a Code Generation Advisor
report, the parameter is highlighted in the Configuration Parameters dialog box.

License requirement for viewing code generation report

In R2014b, a Simulink Coder license is required to view a code generation report.

Compatibility Considerations

Previously, you did not need a license to view the code generation report.

Improved report generation performance

When you use codegen.rpt to create code generation reports with Simulink Report
Generator™, in the Report Options dialog box on the Properties pane, the Compile
model to report on compiled information check box is selected by default. With this

 Code Generation

8-5

https://www.mathworks.com/help/releases/R2014b/rtw/ref/code-generation-pane-interface.html#bq9kc9d-1

option, the software updates a model only once when creating the report. You get much
faster report generation, especially for models with many atomic subsystems. For more
information, see Document Generated Code with Simulink Report Generator.

Intel Performance Primitives (IPP) platform-specific code replacement
libraries for cross-platform code generation

In R2014b, you can select an Intel® Performance Primitive (IPP) code replacement
library for a specific platform. You can generate code for a platform that is different from
the host platform that you use for code generation. The new code replacement libraries
are:

• Intel IPP for x86-64 (Windows)
• Intel IPP/SSE with GNU99 extensions for x86-64 (Windows)
• Intel IPP for x86/Pentium (Windows)
• Intel IPP/SSE with GNU99 extensions for x86/Pentium (Windows)
• Intel IPP for x86-64 (Linux)
• Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)

For a model that you create in R2014b, you can no longer select these libraries:

• Intel IPP
• Intel IPP/SSE with GNU99 extensions

If, however, you open a model from a previous release that specifies Intel IPP or Intel
IPP/SSE with GNU99 extensions, the library selection is preserved and that library
appears in the selection list.

See Choose a Code Replacement Library.

R2014b

8-6

https://www.mathworks.com/help/releases/R2014b/rtw/ug/simulink-report-generator-report.html
https://www.mathworks.com/help/releases/R2014b/rtw/ug/choose-a-code-replacement-library-sc.html

Deployment

Support for Eclipse IDE and Desktop Targets has been removed

Simulink Coder support for Eclipse™ IDE has been removed.

You can no longer use Simulink Coder with Eclipse IDE to build and run generated code
on your host desktop computer that has Linux or Windows.

Compatibility Considerations

There are no recommended alternatives for using Simulink Coder with Eclipse IDE and
Desktop Targets.

 Deployment

8-7

Performance

Block reduction optimization improvement

The block reduction optimization includes reduction of code for blocks that generate dead
code. In the Configuration Parameters dialog box, on the Optimization pane, select the
Block reduction check box to enable this optimization. In R2014b, the code generator
searches for source blocks connected to a block’s unused input port.

To use this optimization for an S-function block, designate an input port as
NEVER_NEEDED using ssSetInputPortSignalWhenNeeded(S,0,NEVER_NEEDED). S is
a SimStruct representing an S-Function block. You can call this function in the
mdlInitializeSizes function or the mdlSetWorkWidths function.

R2014b

8-8

https://www.mathworks.com/help/releases/R2014b/simulink/gui/optimization-pane-general.html#bq7cqwp-1
https://www.mathworks.com/help/releases/R2014b/simulink/sfg/mdlinitializesizes.html
https://www.mathworks.com/help/releases/R2014b/simulink/sfg/mdlsetworkwidths.html

8-9

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

R2014b

8-10

https://www.mathworks.com/support/bugreports/

R2014a

Version: 8.6

New Features

Bug Fixes

Compatibility Considerations

9

Model Architecture and Design

Custom post-processing function for protected models

You can specify a post-processing function for code generated from a protected model
using the 'CustomPostProcessingHook' option of the
Simulink.ModelReference.protect function. You can use this option to run a third-
party custom obfuscator on the generated code.

For more information, see Specify Custom Obfuscator for Protected Model.

Context-sensitive help for the Create Protected Model dialog box

In R2014a, context-sensitive help (CSH) is available for parameters in the Create
Protected Model dialog box.

R2014a

9-2

https://www.mathworks.com/help/releases/R2014a/rtw/ref/simulink.modelreference.protect.html
https://www.mathworks.com/help/releases/R2014a/rtw/ug/specify-custom-obfuscator-for-protected-model.html

Data, Function, and File Definition

C++ class generation
Beginning in R2014a, you can generate encapsulated C++ class code from GRT-based
models, in addition to the previously supported ERT-based models. The following new
parameters on the Code Generation > Interface pane of the Configuration Parameters
dialog box support C++ class code generation:

• Code interface packaging
• Multi-instance code error diagnostic

The general procedure for generating C++ class interfaces to model code is as follows:

1 Select the C++ language for your model.
2 Select C++ class code interface packaging for your model.
3 Generate model code.
4 Examine the C++ class interfaces in the generated files and the HTML code

generation report.

For more information, see Generate C++ Class Interface to Model or Subsystem Code.

Simpler behavior for tuning all parameters and support for referenced
models
This release simplifies the way Simulink considers the InlineParameters option when
it is set to Off. You can perform the following operations:

• Tune all block parameters in your model during simulation, either through the
parameters themselves or through the tunable variables that they reference.

• Preserve the mapping between a block parameter and a variable in generated code
even when the block parameter does not reference any tunable variables.

• Retain the mapping between tunable workspace variables and variables in generated
code, irrespective of the InlineParameters setting.

• Set the value of InlineParameters to Off for model references.

These behaviors are consistent across models containing reusable subsystems and
reference models.

 Data, Function, and File Definition

9-3

https://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bt7cuoh-1
https://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bq9kexo-1
https://www.mathworks.com/help/releases/R2014a/rtw/ug/generate-class-interface-to-model-or-subsystem-code.html

Compatibility Considerations

The simplified behavior enhances the generated code and provides improved mapping
between a block parameter and a variable in generated code.
Block parameter expression Code generated previously Code generated in R2014a
Expressions referencing
global variables (e.g., K+1)

Variable name is not
preserved. Block parameter
name is preserved.
struct Parameters_model_ {
 real_T Gain_Gain; // Expression: K+1
}
y = model_P.Gain_Gain*u;

Expression is considered
tunable. Variable name is
preserved in code and is
tunable.
real_T K = 2.0;
y = (K+1)*u;

Expressions referencing
mask parameters for
nonreusable subsystems
(e.g., MP*3), the value of MP
being a nontunable
expression.

Variable name is not
preserved. Block parameter
name is preserved.
struct Parameters_model_ {
 real_T Gain_Gain; // Expression: MP*3
}
y = model_P.Gain_Gain*u;

Expression is considered
tunable. Variable name is
substituted by parameter
value.
struct Parameters_model_ {
 real_T Subsystem_MP;
}
y = (model_P.Subsystem_MP * 3) * u;

Expressions referencing
model arguments (resp.
mask parameters) for
referenced models (resp.
reusable subsystems) (e.g.,
Arg+1)

Variable name is not
preserved. Block parameter
name is preserved.
struct Subsystem {
 Gain_Gain; // Expression: Arg+1
}
y = model_P.Subsystem1.Gain_Gain*u;

Variable name is preserved
as an argument name.
subsystem(y, u, rtp_Arg) {
 y = (rtp_Arg+1)*u;
}

To revert the behavior of InlineParameters Off to what it was in R2013b, run
revertInlineParametersOffToR2013b at the MATLAB Command Line. Alternately,
add revertInlineParametersOffToR2013b to your MATLAB startup function.

After running revertInlineParametersOffToR2013b, you cannot undo the change in
the same MATLAB session. To return to the InlineParameters Off behavior in R2014a,
restart MATLAB.

The command inlineParametersOffRevertedToR2013b returns a logical true or
false to indicate whether the InlineParameters Off behavior has been reverted to that in
R2013b.

R2014a

9-4

Code generated using the R2013b InlineParameters Off behavior is not compatible
with the code generated using the R2014a InlineParameters Off behavior. Therefore,
run revertInlineParametersOffToR2013b before code generation.

Improved control of C and C++ code interface packaging

R2014a provides improved control of code interface packaging for generated model code,
including nonreusable code, reusable code, and encapsulated C++ class code. To support
more robust control of code interface packaging, the following changes were made to the
Code Generation > Interface pane of the Configuration Parameters dialog box and
corresponding command-line model parameters:

• The new model parameter Code interface packaging (CodeInterfacePackaging)
selects the packaging for the C or C++ code interface generated for your model. The
possible values are:

• Nonreusable function
• Reusable function
• C++ class (available if Language is set to C++)

Note As described in “C++ class generation” on page 9-3, C++ class code generation is
now available to GRT-based models as well as ERT-based models.

• The model option Generate reusable code (MultiInstanceERTCode) has been
removed. Setting the value of Code interface packaging to Reusable function
or Nonreusable function is equivalent to selecting or clearing Generate
reusable code in releases before R2014a.

• The model parameter Reusable code error diagnostic has been renamed to Multi-
instance code error diagnostic. The parameter now supports GRT models and C+
+ class code generation. For more information, see “Multi-instance code error
diagnostic for reusable function code and C++ class code” on page 9-7.

• Parameters within the Code interface subpane have been regrouped and relocated
to improve pane navigation and code interface configuration workflows. The following
figure shows the Code interface subpane when Code interface packaging is set to
C++ class for an ERT model.

 Data, Function, and File Definition

9-5

https://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bt7cuoh-1

Compatibility Considerations
• For GRT and ERT-based models, selecting the Language (TargetLang) value C++

now provides two possible forms of C++ code interface packaging:

• If you set Code interface packaging (CodeInterfacePackaging) to C++
class, the build generates a C++ class interface to model code. The generated
interface encapsulates required model data into C++ class attributes and model
entry point functions into C++ class methods.

• If you set Code interface packaging to a value other than C++ class, the build
generates C++ compatible .cpp files containing model interfaces enclosed within
an extern "C" link directive. This behavior is equivalent to code generation with
Language set to C++ before R2014a.

• A script created before R2014a might select C++ extern "C" code packaging for a
model by using set_param to set TargetLang to C++. Beginning in R2014a, setting
TargetLang to C++ selects only the C++ language, and does not alter the C++ code

R2014a

9-6

interface packaging. To produce the same result as before R2014a, update the script
to set both TargetLang and CodeInterfacePackaging.

• For ERT-based models, the Language value C++ (Encapsulated) is no longer
available. To configure encapsulated C++ class code generation, set Language to C++
and set Code interface packaging to C++ class. This pair of settings is equivalent
to setting Language to C++ (Encapsulated) in releases before R2014a.

• For GRT and ERT-based models, the model option Generate reusable code
(MultiInstanceERTCode) has been removed. Setting the value of Code interface
packaging to Reusable function or Nonreusable function is equivalent to
selecting or clearing Generate reusable code in releases before R2014a.

Multi-instance code error diagnostic for reusable function code and C++
class code
The model parameter Reusable code error diagnostic has been renamed to Multi-
instance code error diagnostic. Before R2014a, Reusable code error diagnostic
applied only to ERT-based models and to reusable function code. Beginning in R2014a,
Multi-instance code error diagnostic also applies to GRT-based models and to C++
class code.

The Multi-instance code error diagnostic parameter specifies the diagnostic action
that the build process takes when a model violates strict requirements for generating
multi-instance code:

• None — Proceed with build without displaying a diagnostic message.
• Warning — Proceed with build after displaying a warning message.
• Error (default) — Abort build after displaying an error message.

The name of the equivalent command-line parameter, MultiInstanceErrorCode, is
unchanged.

Compatibility Considerations
• In releases before R2014a, Reusable code error diagnostic did not apply to GRT

models. Now, renamed to Multi-instance code error diagnostic, the parameter
applies to GRT models. Its default value is Error.

If you load a GRT model created before R2014a, for which reusable code generation is
selected, by default, code generation now applies strict multi-instance code

 Data, Function, and File Definition

9-7

https://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bq9kexo-1
https://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bq9kexo-1

requirements to the model during code generation, and the build might fail. If the
build fails, examine the condition that caused the error message. Decide whether to
reset Multi-instance code error diagnostic to Warning or None, or leave Multi-
instance code error diagnostic set to Error and modify the model to remove the
condition.

• Before R2014a, the setting of the ERT model parameter Reusable code error
diagnostic was ignored if a model was configured to do all of the following:

• Generate reusable code.
• Generate a function to allocate model data for each model instance.
• Simulate in External mode.

Beginning in R2014a, if a model is configured as described, the setting of the GRT and
ERT model parameter Multi-instance code error diagnostic is honored. If the
diagnostic parameter is set to Error (the default value), a model that built
successfully before R2014a might fail to build. If the build fails, examine the condition
that caused the error message. Decide whether to reset Multi-instance code error
diagnostic to Warning or None, or leave Multi-instance code error diagnostic
set to Error and modify the model to remove the condition.

Removal of TRUE and FALSE from rtwtypes.h

When the target language is C, rtwtypes.h compiles the definitions for true and
false into the code. It no longer defines TRUE and FALSE.

If you integrate code generated in R2014a with custom code that references TRUE and
FALSE, modify your custom code in one of these ways:

• Define TRUE and FALSE.
• Change TRUE to true and FALSE to false.
• Change TRUE to 1U and FALSE to 0U.

R2014a

9-8

Code Generation

Independent configuration selections for standard math and code
replacement libraries

In R2014a, you can independently select and configure standard math and code
replacement libraries for code generation with the following changes in the Configuration
Parameters dialog box.

• On the top-level Code Generation pane, the Language (TargetLang) parameter
setting determines options that are available for a new Standard math library
parameter on the Code Generation > Interface pane.

• Depending on your Language selection, the new Standard math library
(TargetLangStandard) parameter on the Code Generation > Interface pane lists
these options.
Language Standard Math Libraries
C C89/C90 (ANSI) – default

C99 (ISO)
C++ C89/C90 (ANSI) – default

C99 (ISO)

C++03 (ISO)

• On the Code Generation > Interface pane, the Code replacement library
(CodeReplacementLibrary) parameter lists available code replacement libraries.
The Simulink Coder software filters the list based on compatibility with the
Language and Standard math library settings and on product licensing (for
example, Embedded Coder offers more libraries and the ability to create and use
custom code replacement libraries).

For more information, see:

• Language
• Standard math library
• Code replacement library

 Code Generation

9-9

https://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-general.html#bq26b3m-1
https://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bt7bn_r-1
https://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bq26cja-1

Compatibility Considerations

In R2014a, code replacement libraries provided by MathWorks® no longer include
standard math libraries.

• When you load a model created with an earlier version:

• The CodeReplacementLibrary parameter setting remains the same unless
previously set to C89/C90 (ANSI), C99 (ISO), C++ (ISO), Intel IPP
(ANSI), or Intel IPP (ISO). In these cases, Simulink Coder software sets
CodeReplacementLibrary to None or Intel IPP.

• Simulink Coder software sets the new TargetLangStandard parameter to
C89/C90 (ANSI), C99 (ISO), or C++03 (ISO), depending on the previous
CodeReplacementLibrary setting.
If CodeReplacementLibrary was set to TargetLangStandard is set to
C89/C90 (ANSI), C99 (ISO), or C++
(ISO)

C89/C90 (ANSI), C99 (ISO), or
C++03 (ISO), respectively

GNU99 (GNU), Intel IPP (ISO), Intel
IPP (GNU), ADI TigerSHARC (Embedded
Coder only), or MULTI BF53x (Embedded
Coder only)

C99 (ISO)

A custom library (Embedded Coder only),
and the corresponding registration file has
been loaded in memory

A value based on the BaseTfl
property setting

Any other value The default standard math library,
C89/C90 (ANSI)

• When you select a code replacement library provided by MathWorks after you load a
model, the code generator can produce different code than in previous versions
depending on the TargetLangStandard setting. Verify generated code.

• When you export a model created in R2014a, the Simulink Coder software:

• Uses the TargetLangStandard setting to map to the closest available code
replacement library or the default library in the previous version, if
CodeReplacementLibrary is set to None or Intel IPP.

• Otherwise, ignores the TargetLangStandard parameter.

R2014a

9-10

Generated code compilation using LCC-64 bit on Windows hosts
You can now use the LCC-win64 compiler, included on Windows 64-bit platforms, for
GRT model builds. If you have an Embedded Coder license, you also can use the compiler
for ERT model builds and SIL and PIL mode simulation on Windows hosts.

Improved code integration of shared utility files
Previously, the code generator created the file rtw_shared_utils.h which included
header files associated with CRL replacements and Simulink and MATLAB utilities.

In R2014a, code generation no longer creates rtw_shared_utils.h. Code generation
for a model produces code which directly includes only those header files required for the
code. For subsystems, code generation includes only those header files required for the
subsystem code. The generated code is more deterministic. You can easily integrate code
generated from separate software components.

Optimized inline constant expansion
In R2014a, the code generator expands inline references to buses, bus arrays, and
complex arrays where the elements are all constant and equal. This enhancement
improves execution speed and reduces RAM consumption.

rtwtypes.h included before tmwtypes.h
If code generation produces a program file which includes the header files rtwtypes.h
and tmwtypes.h, then code generation includes rtwtypes.h first. This file order occurs
whether the program file includes the header files directly or indirectly.

When code generation creates rtwtypes.h, it includes typedef definitions tailored for
the target, using model parameter settings. rtwtypes.h is included first so that its
target-specific typedef definitions are the definitions used when compiling the code.

Constant block output value used when in nonreusable subsystem
Previously, when you defined a Constant block within a nonreusable subsystem, and
then connected a block to the Constant block outside that subsystem, the connected block
used the value from the Value parameter directly. Now, the connected block uses the
output of the Constant block.

 Code Generation

9-11

Using the Constant block output simplifies mapping from the Subsystem block to its
representation in the generated C code.

R2014a

9-12

Deployment

Support for Eclipse IDE and Desktop Targets will be removed

Simulink Coder support for Eclipse IDE will be removed in a future release.

Currently, you can use Simulink Coder support for Eclipse IDE to:

• Build and run generated code on your host desktop computer running Linux or
Windows.

• Generate multitasking code that uses POSIX threads (Pthreads) for concurrent
execution.

• Tune parameters on, and monitor data from, an executable running on the target
hardware (External mode).

• Perform numeric verification using processor-in-the-loop (PIL) simulation.
• Generate IDE projects and use the Automation Interface API.
• Generate makefile projects using the mingw_host configuration in XMakefile.
• Use Linux Task and Windows Task blocks

Compatibility Considerations

There are no recommended alternatives for using Simulink Coder with Eclipse IDE and
Desktop Targets.

Additional build folder information and protected model support for
RTW.getBuildDir function

In 2014a, when you use the RTW.getBuildDir function to get build folder information,
these new fields are available:

• ModelRefRelativeRootSimDir – String specifying the relative root folder for the
model reference target simulation folder.

• ModelRefRelativeRootTgtDir – String specifying the relative root folder for the
model reference target build folder.

• SharedUtilsSimDir – String specifying the shared utility folder for simulation.

 Deployment

9-13

https://www.mathworks.com/help/releases/R2014a/rtw/ref/linuxtask.html
https://www.mathworks.com/help/releases/R2014a/rtw/ref/windowstask.html
https://www.mathworks.com/help/releases/R2014a/rtw/ref/rtw.getbuilddir.html

• SharedUtilsTgtDir – String specifying the shared utility folder for code generation.

In addition, the RTW.getBuildDir function can return build folder information for
protected models.

Wind River Tornado (VxWorks 5.x) target to be removed in future
release

The Wind River® Tornado® (VxWorks® 5.x) target will be removed from Simulink Coder
software in a future release. If you generate code using the system target file
tornado.tlc, the software displays a warning about future removal of the target.

Beginning in R2014a, you can no longer select the system target file tornado.tlc for a
model using the list of targets in the System Target File Browser. However, you can still
specify the Tornado target. Either enter the text tornado.tlc in the System target
file parameter field or, from the MATLAB command line, use the set_param command
to set the SystemTargetFile parameter to 'tornado.tlc'.

Compatibility Considerations

If you have an Embedded Coder license, you can use the Wind River VxWorks support
package. The support package allows you to use the XMakefiles feature to automatically
generate and integrate code with VxWorks 6.7, VxWorks 6.8, and VxWorks 6.9. For more
information, see www.mathworks.com/hardware-support/vxworks.html.

R2014a

9-14

https://www.mathworks.com/help/releases/R2014a/rtw/ref/rtw.getbuilddir.html
https://www.mathworks.com/help/releases/R2013a/rtw/ref/code-generation-pane-general.html#bq26b22-1
https://www.mathworks.com/help/releases/R2013a/rtw/ref/code-generation-pane-general.html#bq26b22-1
http://www.mathworks.com/hardware-support/vxworks.html

Performance

To Workspace, Display, and Scope blocks removed by block reduction

When performing block reduction, the code generator can eliminate the Display block
when all of the following are true:

• External mode is off. On the Code Generation > Interface pane, set Interface to
None.

• The target is not a simulation target, such as grt.tlc, ert.tlc, and autosar.tlc.

When doing block reduction, the code generator can eliminate the To Workspace and
Scope blocks when all of the following are true:

• External mode is off. On the Code Generation > Interface pane, set Interface to
None.

• The system target file is grt.tlc or ert.tlc.
• MAT-file logging is off. On the Code Generation > Interface pane, the MAT-file

logging check box is cleared.

Optimized reusable subsystem inputs

When processing the inputs to reusable subsystems, code generation optimizes code
reuse and efficiency when you select the input signal. To select the input signal, use a
virtual Bus Selector block or a Selector block. This enhancement also improves
traceability.

 Performance

9-15

R2014a

9-16

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

9-17

https://www.mathworks.com/support/bugreports/

R2013b

Version: 8.5

New Features

Bug Fixes

Compatibility Considerations

10

Model Architecture and Design

Multilevel access control when creating password-protected models for
IP protection

If you create a protected model, you have the option to specify different passwords to
control protected model functionality. The supported types of functionality for password
protection are:

• Model viewing
• Simulation
• Code generation

For password-protected models, before using each type of supported functionality, you
must enter a password.

To protect your models with passwords, right-click a model reference block, and then
select Subsystem & Model Reference > Create Protected Model for Selected
Model Block. Select the functionality that you want supported inside your protected
model. Enter a password for each type of supported functionality. Passwords must be a
minimum of four characters. When you are finished creating passwords, click Create.

To use the supported functionality of a protected model, you must enter the password.
Right-click the protected model shield icon and select Authorize. Enter the password,
and click OK.

Simulink Coder checks in Model Advisor

You can use the Model Advisor Simulink Coder Checks to verify that your model is
configured for code generation. Previously, the checks were available in the Model
Advisor Embedded Coder folder.

R2013b

10-2

https://www.mathworks.com/help/releases/R2013b/rtw/ref/embedded-codersimulink-coder-checks.html

Data, Function, and File Definition

Imported data can be shared

You can now import header files and use them in the shared utilities folder. Previously,
the only imported data types available were those data types exported by a previous
model.

Some shared items using imported data types include:

• Reusable library subsystems
• Constants shared across models
• Shared data and Simulink or mpt custom storage classes such as ExportToFile

and Volatile

For more information, see Incremental Shared Utility Code Generation and Compilation.

Compatibility Considerations
• Previously, you changed imported data types without affecting the shared utilities

folder. Now, if you change an imported data type, code generation notifies you that
you must clear slprj and regenerate code.

• Previously, you created an imported data type with no header file specified. Now, if
there is no header file for an imported data type, code generation generates an error.

Readability improved for constant names

To make constant parameter names more easily readable, code generation uses a macro
(#define) to create the name when:

• The constant parameter is defined in the shared utilities folder.
• The constant parameter is not in a shared function.

When the constant parameter is used in a shared function, code generation always
generates a checksum-based name.

Previously, if a constant parameter definition was generated to the shared location, code
generation sometimes used the checksum-based name in nonshared function files.

 Data, Function, and File Definition

10-3

https://www.mathworks.com/help/releases/R2013b/rtw/ug/incremental-shared-utility-code-generation-and-compilation.html

Removal of two's complement guard and RTWTYPES_ID from
rtwtypes.h

In 2013b, the following changes have been made to rtwtypes.h:

• This code has been removed from rtwtypes.h:
/*
* Simulink Coder assumes the code is compiled on a target using a 2's complement
* representation for signed integer values.
*/
#if ((SCHAR_MIN + 1) != -SCHAR_MAX)
#error "This code must be compiled using a 2's complement representation for signed integer values"
#endif

Simulink Coder still assumes code is compiled on a target using a two’s complement
representation for signed integer values.

• The definition of the macro RTWTYPES_ID has been removed from rtwtypes.h. The
definition is no longer referenced from model_private.h.

For information about the rtwtypes.h file, see Files and Folders Created by Build
Process.

MODEL_M macro renamed in static main for multi-instance GRT target

In R2013a, the static main program module matlabroot/rtw/c/src/common/
rt_malloc_main.c defined a MODEL_M macro for getting the rtModel type for the
model. R2013b renames the macro to MODEL_M_TYPE to resolve a potential naming
conflict.

Compatibility Considerations

If you used R2013a materials to develop a custom target based on GRT with model option
Generate reusable code selected, update your custom static main to use
MODEL_M_TYPE instead of MODEL_M to get the rtModel type. You can use the installed
static main module matlabroot/rtw/c/src/common/rt_malloc_main.c as a
reference point.

R2013b

10-4

https://www.mathworks.com/help/releases/R2013b/rtw/ug/files-and-folders-created-by-the-build-process.html
https://www.mathworks.com/help/releases/R2013b/rtw/ug/files-and-folders-created-by-the-build-process.html

Code Generation

Optimized code for long long data type

If your target hardware and your compiler support the C99 long long integer data type,
you can select to use this data type for code generation. Using long long results in more
efficient generated code that contains fewer cumbersome operations and multiword
helper functions. This data type also provides more accurate simulation results for fixed-
point and integer simulations. If you are using Microsoft® Windows (64-bit), using long
long improves performance for many workflows including using Accelerator mode and
working with Stateflow software.

For more information, see the Enable long long and Number of bits: long long
configuration parameters on the Hardware Implementation Pane.

At the command line, you can use the following new model parameters:

• ProdLongLongMode: Specify that your C compiler supports the long long data type.
You must set this parameter to 'on' to enable ProdBitPerLongLong.

• ProdBitPerLongLong: Describes the length in bits of the C long long data type
supported by the production hardware.

• TargetLongLongMode: Specifies whether your C compiler supports the long long
data type. You must set this parameter to 'on' to enable TargetBitPerLongLong.

• TargetBitPerLongLong: Describes the length in bits of the C long long data type
supported by the hardware used to test generated code.

For more information, see Model Parameters.

<LEGAL> tokens removed from comments in generated code

Copyright notice comments in the generated code no longer include a <LEGAL> token.
Copyright notices are now bound by COPYRIGHT NOTICE at the top and END at the
bottom.

 Code Generation

10-5

https://www.mathworks.com/help/releases/R2013b/simulink/gui/hardware-implementation-pane.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/model-parameters.html

Deployment

Compiler toolchain interface for automating code generation builds
You can configure your model to generate code using Toolchain settings instead of
Template makefile parameters. The software and documentation refer to using these
settings as the toolchain approach.

The toolchain approach enables you to:

• Select the toolchain a Simulink model uses to build generated code.
• Use custom toolchains that are registered using MATLAB Coder software.
• Select a build configuration such as Faster Builds, Faster Runs, Debug.
• Customize a build configuration, such as setting compiler optimization flags, using

Specify.
• Use support packages that include custom toolchains.

To use the toolchain approach:

1 Open the Configuration Parameters dialog box for Simulink model by pressing Ctrl
+E.

2 In Configuration Parameters, select the Code Generation pane.
3 Click the Browse button for the System target file parameter, and select one of

the following:

• grt.tlc — Generic Real-Time Target (default)
• ert.tlc — Embedded Coder (Requires the Embedded Coder product)
• ert_shrlib.tlc — Embedded Coder (host-based shared library

target) (Requires the Embedded Coder product)

When you use toolchain approach, the following Toolchain settings are available:

• Target hardware (only with ert.tlc — Embedded Coder)
• Toolchain
• Build Configuration

When you use the toolchain approach, the following Makefile configuration are
unavailable:

R2013b

10-6

• Generate makefile
• Make command
• Template makefile

For more information, see:

• Configure the Build Process
• Custom Toolchain Registration
• Code Generation Pane: General

Compatibility Considerations

When you open a Simulink model that has System target file set to grt.tlc,
ert.tlc, or ert_shrlib.tlc, Simulink Coder software automatically updates the
model to use the toolchain approach. If the model does not use a default template
makefile or configuration settings, Simulink Coder software might not upgrade the
model. For more information, see Upgrade Model to Use Toolchain Approach.

Log data on Linux-based target hardware

With Linux-based target hardware for the Simulink “Run on Target Hardware” feature,
you can log data from a model to a MAT-file, and then pull that data into MATLAB for
analysis.

This capability:

• Works with Raspberry Pi™, BeagleBoard, Gumstix® Overo®, and PandaBoard
hardware.

• Enables you to log real-time data from signals attached to scopes, root-level I/O ports,
or To Workspace blocks.

• Saves the logged data to MAT-files on the target hardware.
• Enables you to use SSH to transfer MAT-files to your host computer.

For more information, see Log Data on Linux-based Target Hardware and Target
Hardware

Note This feature requires a Simulink Coder license.

 Deployment

10-7

https://www.mathworks.com/help/releases/R2013b/rtw/ug/program-builds.html#brchkif
https://www.mathworks.com/help/releases/R2013b/coder/custom-toolchain-registration.html
https://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-general.html
https://www.mathworks.com/help/releases/R2013b/rtw/ug/program-builds.html#bt056zt-1
https://www.mathworks.com/help/releases/R2013b/rtw/ug/log-data-on-linux-based-target-hardware.html
https://www.mathworks.com/help/releases/R2013b/simulink/index.html#target-hardware
https://www.mathworks.com/help/releases/R2013b/simulink/index.html#target-hardware

Modified file locations and commands for rebuilding external mode MEX
files

In R2013b, files used in MATLAB commands to rebuild the standard external mode MEX
files ext_comm and ext_serial_win32 moved to new locations in the installed
MATLAB tree. For example:

• Files located in matlabroot/toolbox/rtw/rtw moved to matlabroot/toolbox/
coder/simulinkcoder_core.

• Files located in matlabroot/rtw/ext_mode moved to matlabroot/toolbox/
coder/simulinkcoder_core/ext_mode/host.

Compatibility Considerations

Commands for rebuilding the standard ext_comm and ext_serial_win32 modules on
Windows and UNIX® platforms must be updated to reference the new file locations. See
the table MATLAB Commands to Rebuild ext_comm and ext_serial_win32 MEX-Files.

R2013b

10-8

https://www.mathworks.com/help/releases/R2015a/rtw/ug/creating-a-tcp-ip-transport-layer-for-external-communication.html#brk9sf2-1

Performance

Reduced data copies for bus signals with global storage

Data copies are reduced when subsystem outputs are global and packed into a bus
through a bus creator block. This enhancement improves execution speed and reduces
RAM consumption.

For this optimization your model requires all of the following conditions:

• Set subsystem Function packaging parameter to Inline or Nonreusable.
• The signal property for output signal cannot be Testpoint.
• The subsystem must have a single destination.
• For a conditionally executed subsystem’s properties, set the output, when disabled, to

held.

Previously, code generation might produce extra data copies for bus signals with global
storage.

 Performance

10-9

Customization

Support for user-authored MATLAB system objects

Simulink Coder supports code generation for the MATLAB System block, which allows
you to include a System object in your Simulink model. This capability is useful for
including algorithms. For more information, see System Object Integration.

TLC Options removed from Configuration Parameters dialog box

The model parameter TLC options has been removed from the Code Generation pane
of the Configuration Parameters dialog box. However, at the MATLAB command line,
you can still use the set_param command to set the equivalent command-line parameter
TLCOptions. For more information, see Specify TLC Options and Configure TLC.

R2013b

10-10

https://www.mathworks.com/help/releases/R2013b/simulink/slref/matlabsystem.html
https://www.mathworks.com/help/releases/R2013b/simulink/define-new-system-objects.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/set_param.html
https://www.mathworks.com/help/releases/R2013b/rtw/ug/program-builds.html#f1158912
https://www.mathworks.com/help/releases/R2013b/rtw/tlc/configuring-tlc.html

10-11

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

R2013b

10-12

https://www.mathworks.com/support/bugreports/

R2013a

Version: 8.4

New Features

Bug Fixes

Compatibility Considerations

11

Data, Function, and File Definition

Optimized interfaces for Simulink functions called in Stateflow

Previously, when subsystem input and output signals were used inside a Stateflow chart,
the generated code for the input and output signals was copied into global variables. In
R2013a, when the Subsystem block parameter Function packaging is set to Inline, the
subsystem inputs and outputs called within a Stateflow chart are now local variables.
This optimization improves execution speed and memory usage.

Shortened system-generated identifier names

For GRT targets, the length of the system-generated identifier names are shortened to
allow for more space for the user-specified components of the generated identifier names.
The name changes provide a more consistent and predictable naming system that uses
camel case, no underscores or plurals, and consistent abbreviations for both a type and a
variable.

The default for the system-generated identifiers per model are changed.
Before R2013a In R2013a Type
BlockIO, B B Type
ExternalInputs ExtU Type
ExternalInputSizes ExtUSize Type
ExternalOutputs ExtY Type
ExternaOutputSizes ExtYSize Type
Parameters P Type
ConstBlockIO ConstB Const Type
MachineLocalData MachLocal Const Type
ConstParam, ConstP ConstP Const Type, Global

Variable
ConstParamWithInit,
ConstWithInitP

ConstInitP Const Type, Global
Variable

D_Work, DWork DW Type, Global Variable

R2013a

11-2

https://www.mathworks.com/help/releases/R2013a/simulink/slref/codereusesubsystem.html#brp1xt9-91

Before R2013a In R2013a Type
MassMatrixGlobal MassMatrix Type, Global Variable
PrevZCSigStates,
PrevZCSigState

PrevZCX Type, Global Variable

ContinuousStates, X X Type, Global Variable
StateDisabled, Xdis XDis Type, Global Variable
StateDerivatives, Xdot XDot Type, Global Variable
ZCSignalValues,
ZCSignalValues

ZCV Type, Global Variable

DefaultParameters DefaultP Global Variable
GlobalTID GlobalTID Global Variable
InvariantSignals Invariant Global Variable
Machine MachLocal Global Variable
NSTAGES NSTAGES Global Variable
Object Obj Global Variable
TimingBridge TimingBrdg Global Variable
U U Global Variable
USize USize Global Variable
Y Y Global Variable
YSize YSize Global Variable
The default for the system-generated identifiers names per referenced model or reusable
subsystem are changed.
Before R2013a In R2013a Type
rtB, B B Type, Global Variable
rtC, C ConstB Type, Global Variable
rtDW, DW DW Type, Global Variable
rtMdlrefDWork ,
MdlrefDWork

MdlRefDW Type, Global Variable

rtP, P P Type, Global Variable
rtRTM, RTM RTM Type, Global Variable

 Data, Function, and File Definition

11-3

Before R2013a In R2013a Type
rtX, X X Type, Global Variable
rtXdis, Xdis XDis Type, Global Variable
rtXdot, Xdot XDot Type, Global Variable
rtZCE, ZCE ZCE Type, Global Variable
rtZCSV, ZCSV ZCV Type, Global Variable
For more information, see Construction of Generated Identifiers.

R2013a

11-4

https://www.mathworks.com/help/releases/R2013a/rtw/ug/configure-generated-identifiers.html

Code Generation

Shared utility name consistency across builds with maximum identifier
length control
In R2013a, shared utility names remain consistent in the generated code across multiple
builds of your model. In addition, shared utility names now comply with the Maximum
identifier length parameter specified on the Code Generation > Symbols pane in the
Configuration Parameters dialog box. The Maximum identifier length parameter does
not apply to fixed-point and DSP utilities.

Code Generation Advisor available on menu bar
To launch the Code Generation Advisor, on the model menu bar, select Code > C/C++
Code > Code Generation Advisor. Alternatively, the Code Generation Advisor
remains available in the Configuration Parameters dialog box, on the Code Generation
pane.

For information about using the Code Generation Advisor to configure your model to
meet specific code generation objectives, see:

• Application Objectives in Simulink Coder
• Application Objectives in Embedded Coder

Code generation build when reusable library subsystem link status
changes
Shared functions for a reusable library subsystem are generated only for resolved library
links. If you enable or disable a library link for a reusable subsystem, and then build
your model, new code is generated.

Protected models usable in model reference hierarchies
Previously, you could not protect a model and use it in a model reference hierarchy.

In R2013a, you can use protected models in a model reference hierarchy. In addition,
R2013a includes enhancements to the programmatic interface as well as the dialog for
model protection.

 Code Generation

11-5

https://www.mathworks.com/help/releases/R2013a/rtw/application-objectives.html
https://www.mathworks.com/help/releases/R2013a/ecoder/application-objectives.html

To learn more about changes to the programmatic interface, see
Simulink.ModelReference.protect and to view the changes to the model protection
dialog, see Create a Protected Model.

R2013a

11-6

https://www.mathworks.com/help/releases/R2013a/rtw/ref/simulink.modelreference.protect.html
https://www.mathworks.com/help/releases/R2013a/rtw/ug/create-a-protected-model-using-the-model-block-context-menu.html

Deployment

Simplified multi-instance code with support for referenced models

R2013a provides simplified multi-instance code deployment for GRT targets with support
for referenced models.

In previous releases, to generate reentrant, reusable code with dynamic allocation of per-
instance model data, you had to select a specialized target, grt_malloc.tlc, for the
model. If you selected the GRT malloc target for a model, you could not include
referenced models in your model design.

Beginning in R2013a, you can generate reentrant, reusable code for a GRT model by
selecting the model configuration option Generate reusable code, which is located on
the Code Generation > Interface pane of the Configuration Parameters dialog box.

When you select Generate reusable code for a GRT model, the build process generates
reusable, multi-instance code that is reentrant, as follows:

• The generated model.c source file contains an allocation function that dynamically
allocates model data for each instance of the model.

• The generated code passes the real-time model data structure in, by reference, as an
argument to model_step and the other model entry point functions.

• The real-time model data structure is exported with the model.h header file.

With the new GRT model option Generate reusable code, you can generate and deploy
multi-instance code for your model without selecting a specialized target, and you can
include referenced models in your model design.

Note Use of the grt_malloc.tlc target is no longer recommended. For more
information, see “GRT malloc target to be removed in future release” on page 11-10.

 Deployment

11-7

https://www.mathworks.com/help/releases/R2013a/rtw/ref/code-generation-pane-interface.html#bq9kdp4-1

External mode control panel improvements and C API access

Improved External mode graphical controls

External mode dialog boxes are now consistent with other Simulink dialog boxes, with
improved layout, ability to resize, and consistent sets of buttons. The improved dialog
boxes include the External Mode Control Panel and the subsidiary dialog boxes that
you can open from it, External Signal & Triggering and Enable Data Archiving.
Here is the improved Enable Data Archiving dialog box.

To view the improved External mode dialog boxes, open a model and select Code >
External Mode Control Panel.

C API access from External mode simulations

In previous releases, the External mode and C API data interfaces for model code were
mutually exclusive. Beginning in R2013a, you can generate code for your model with
both the External mode and C API interfaces enabled. Custom code now can access C
API data structures during an External mode simulation.

R2013a

11-8

For more information, see Generate External Mode and C API Data Interfaces.

Hardware configuration relocation from Target Preferences block to
Configuration Parameters dialog

The contents of the Target Preferences block have been relocated to the new Target
Hardware Resources tab on the Coder Target pane in the Configuration Parameters
dialog box.

The Target Preferences block has been removed from the Desktop Targets block library.

 Deployment

11-9

https://www.mathworks.com/help/releases/R2013a/rtw/ug/data-exchange.html#btswdk5-1

If you open a model that contains a Target Preferences block, a warning instructs you
that the block is optional and can be removed from your model.

Opening the Target Preferences block automatically displays the Target Hardware
Resources tab.

For instructions on how to use Target Hardware Resources to build and run a model
on desktop system, see Model Setup.

For information about specific parameters and settings, see Code Generation: Coder
Target Pane.

Support ending for Eclipse IDE in a future release

Support for the Eclipse IDE will end in a future release of the Embedded Coder and
Simulink Coder products.

GRT malloc target to be removed in future release

The GRT malloc target will be removed from Simulink Coder software in a future
release.

Beginning in R2013a, you can no longer select the system target file grt_malloc.tlc
for a model using the list of targets in the System Target File Browser. However, you can
still specify the GRT malloc target. Either enter the text grt_malloc.tlc in the
System target file parameter field or use the set_param command to set the
SystemTargetFile parameter from the MATLAB command line.

Compatibility Considerations

If you are using the system target file grt_malloc.tlc to generate reentrant code with
dynamic memory allocation, switch to using grt.tlc with the model configuration
option Generate reusable code. As described in “Simplified multi-instance code with
support for referenced models” on page 11-7, the Generate reusable code option offers
several advantages over the GRT malloc target, including a simple multi-instance call
interface and support for model reference hierarchies. For more information, see the help
for Generate reusable code.

R2013a

11-10

https://www.mathworks.com/help/releases/R2013a/rtw/ug/model-setup.html
https://www.mathworks.com/help/releases/R2013a/rtw/ref/code-generation-pane-ide-link.html
https://www.mathworks.com/help/releases/R2013a/rtw/ref/code-generation-pane-ide-link.html
https://www.mathworks.com/help/releases/R2013a/rtw/ref/code-generation-pane-general.html#bq26b22-1
https://www.mathworks.com/help/releases/R2013a/rtw/ref/code-generation-pane-interface.html#bq9kdp4-1

Customization

MakeRTWSettingsObject model parameter removed

In R2013a, the model parameter MakeRTWSettingsObject has been removed from the
software. Before R2013a, custom target authors used MakeRTWSettingsObject in build
hook functions to get the value of the current build folder path during the model build
process.

Compatibility Considerations

If your STF_make_rtw_hook function uses the model parameter
MakeRTWSettingsObject in a get_param function call, you must update the MATLAB
code to use a different function call. For example, your hook function might contain code
similar to the following.

makertwObj = get_param(gcs,'MakeRTWSettingsObject');
buildDirPath = getfield(makertwObj,'BuildDirectory');

In R2013a, you can replace the above code with the following code, which returns the
current build folder path.

buildDirPath = rtwprivate('get_makertwsettings',gcs,'BuildDirectory');

For more information about build hook functions, see Customize Build Process with
STF_make_rtw_hook File.

 Customization

11-11

https://www.mathworks.com/help/releases/R2013a/rtw/ug/customizing-the-target-build-process-with-the-stf-make-rtw-hook-file.html
https://www.mathworks.com/help/releases/R2013a/rtw/ug/customizing-the-target-build-process-with-the-stf-make-rtw-hook-file.html

R2013a

11-12

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

11-13

https://www.mathworks.com/support/bugreports/

R2012b

Version: 8.3

New Features

Bug Fixes

Compatibility Considerations

12

Unified and simplified code interface for ERT and GRT targets
Previously, Simulink Coder software provided a static main program for GRT-based
targets, matlabroot/rtw/c/grt/grt_main.c, that was distinct from the static main
program that Embedded Coder software provided for ERT-based targets,
matlabroot/rtw/c/ert/ert_main.c.

Beginning in R2012b, Simulink Coder software provides a unified static main program
for both GRT- and ERT-based targets:
matlabroot/rtw/c/src/common/rt_main.c

Generated code for GRT-based models is simplified and more consistent with generated
code for ERT-based models. As a result, GRT- and ERT-based models can now use a
common static main program. The benefits for GRT-based models include:

• The generated rtModel structure has a minimal number of fields.
• Unused macros no longer appear in the generated code.
• Multitasking behavior is consistent between GRT and ERT generated code.

Note

• If you are using the pre-R2012a GRT call interface (by selecting the model option
Classic call interface) with a static main program, use the static main program
matlabroot/rtw/c/grt/classic_main.c as a reference point.

• The previous GRT and ERT static main program files, matlabroot/rtw/c/grt/
grt_main.c and matlabroot/rtw/c/ert/ert_main.c, have been removed from
the software and are replaced by the new simplified and classic static main program
files, matlabroot/rtw/c/src/common/rt_main.c and matlabroot/rtw/c/grt/
classic_main.c.

• The generated main program file for ERT targets is still named ert_main.c/cpp.
• If you have an Embedded Coder license, see also External mode support for ERT

targets with static main in the Embedded Coder release notes.

Compatibility Considerations
If you use a GRT-based target with a static main program, and if you configure your
models with the simplified call interface that was made available to GRT targets in

R2012b

12-2

https://www.mathworks.com/help/releases/R2012b/ecoder/release-notes.html#btjto90
https://www.mathworks.com/help/releases/R2012b/ecoder/release-notes.html#btjto90

R2012a (that is, you do not use the model option Classic call interface), you must
update your static main program to be compatible with the R2012b static main changes.
Use the code in matlabroot/rtw/c/src/common/rt_main.c as an example. The
following sections outline some of the key changes to look for.

Error status handling

In R2012a, GRT targets using the simplified call interface handled stop simulation
requests (during MAT-file logging or External mode simulation) differently from ERT
targets using the simplified call interface:

• For ERT targets, a stop simulation request caused the error status to be set to
Simulation finished. The main program (ert_main.c) treated this error status
as a non-error, while treating all other non-NULL status values as errors.

• For GRT targets, a stop simulation request did not cause the error status to be set (it
remained NULL). The main program treated all non-NULL status values as errors.

Beginning in R2012b, the error status handling for GRT targets using the simplified call
interface has been changed to match ERT targets using the simplified interface.

Unused macros

In R2012a, GRT targets using the simplified call interface generated macros differently
from ERT targets using the simplified call interface:

• For ERT targets, the build process did not generate macros if they were not used in
the generated code.

• For GRT targets, the build process unconditionally generated several macros that
were not used in generated code.

Beginning in R2012b, the build process no longer unconditionally generates unused
macros for GRT targets using the simplified call interface. The macros affected include:

• rtm* macros for accessing unused fields of the rtModel structure, such as
ModelPtrs, StepSize, ChildSfunction, TPtr, and TaskTime

• IsSampleHit

Multitasking functions

In R2012a, GRT targets using the simplified call interface generated functions for
multitasking differently from ERT targets using the simplified call interface:

 Check bug reports for issues and fixes

12-3

• For ERT targets, the build process never generated the
rt_SimUpdateDiscreteEvents function and, by default, never generated the
rate_monotonic_scheduler function. (The rate_monotonic_scheduler
function is for MathWorks internal use only.)

• For GRT targets, the build process generated the functions
rt_SimUpdateDiscreteEvents and rate_monotonic_scheduler for
multitasking.

Beginning in R2012b, the build process no longer generates the multitasking functions
rt_SimUpdateDiscreteEvents and rate_monotonic_scheduler for GRT targets
using the simplified call interface.

Convenient packNGo dialog for packaging generated code and artifacts

R2012b adds model configuration parameters for packaging generated code and artifacts
as part of a model build. The following new parameters are located on the Code
Generation pane of the Configuration Parameters dialog box:

• Package code and artifacts (PackageGeneratedCodeAndArtifacts) — Specify
whether to automatically package generated code and artifacts for relocation.

• Zip file name (PackageName) — Specify the name of the .zip file in which to
package generated code and artifacts for relocation.

If you select Package code and artifacts, the build process runs the packNGo function
after code generation to package generated code and artifacts for relocation. Selecting
Package code and artifacts also enables the Zip file name parameter for specifying
a .zip file name. The default file name is model.zip. (model represents the name of
the top model for which code is being generated.)

For more information, see Relocate Code to Another Development Environment.

Reusable code for subsystems shared by referenced models

In R2012b, you can configure a subsystem that is shared across referenced models to
generate code to the shared utilities folder. Code generation creates a standalone
function in the shared utilities folder that can be called by the generated code of multiple
referenced models.

R2012b

12-4

https://www.mathworks.com/help/releases/R2012b/rtw/ref/code-generation-pane-general.html#btissgh-1
https://www.mathworks.com/help/releases/R2012b/rtw/ref/code-generation-pane-general.html#btissgo-1
https://www.mathworks.com/help/releases/R2012b/rtw/ref/packngo.html
https://www.mathworks.com/help/releases/R2012b/rtw/ug/program-builds.html#bqufw6y

To generate a single function for a reusable subsystem, the subsystem must be an active
link to a subsystem in a library. For more information, see Code Reuse For Subsystems
Shared Across Referenced Models.

Code generation for protected models for accelerated simulations and
host targets

A protected model can include the generated code of the model. To create a protected
model, right-click the referenced model and select Subsystem & Model Reference >
Create Protected Model for Selected Block to open the Create Protected Model
dialog box. You can select options that:

• Include the generated C code of the referenced model.
• Obfuscate the generated code.
• Create a protected model report.

You can then package the protected model, generated code, and protected model report
for a third party to use for accelerated simulations and code generation. In R2012b, the
file extension for protected models is .slxp (instead of the .mdlp extension in previous
releases).

For more information, see Protect a Referenced Model and Package a Protected Model.

Reduction of data copies with buses and more efficient for-loops in
generated code

Reduction of cyclomatic complexity with virtual bus expansion

In R2012b, code generation reduces cyclomatic complexity introduced by virtual bus
expansion. This enhancement improves execution speed, reduces code size, and enables
additional optimizations that reduce data copies and RAM consumption.

Simplifying for loop control statements

Improvements to for loops in the generated code include lifting invariance out of the for
loop header and simplifying complex control statements in the for loop header. This
enhancement improves execution speed and the readability of the generated code.

 Check bug reports for issues and fixes

12-5

https://www.mathworks.com/help/releases/R2012b/rtw/ug/code-generation-of-reusable-library-subsystem.html
https://www.mathworks.com/help/releases/R2012b/rtw/ug/code-generation-of-reusable-library-subsystem.html
https://www.mathworks.com/help/releases/R2012b/rtw/ug/creating-a-protected-model.html
https://www.mathworks.com/help/releases/R2012b/rtw/ug/creating-a-protected-model.html
https://www.mathworks.com/help/releases/R2012b/rtw/ug/packaging-a-protected-model.html

Unified rtiostream serial and TCP/IP target connectivity for all host
platforms
Beginning in R2012b, Simulink Coder software provides unified rtiostream serial and
TCP/IP target connectivity for all host platforms. Specifically, R2012b extends
rtiostream serial connectivity to Linux and Macintosh host platforms; previously, only
Windows host platforms were supported.

If you have implemented rtiostream serial connectivity for your embedded target
environment, you can use rtiostream serial communication on any valid host to
connect a Simulink model to your embedded target, using External mode or processor-in-
the-loop (PIL) simulation.

Note Simulink Coder software provides rtiostream serial and TCP/IP target
connectivity for all host platforms. If required, you can implement custom rtiostream
connectivity—for example, to support a communication protocol other than serial or
TCP/IP—for both the host platform and the embedded target environment.

Constant parameters generated as individual constants to shared
location
Previously, constant parameters were generated to a model-specific structure, rtConstP,
in the model_data.c file. If constant parameters are part of a model reference hierarchy
or the model configuration parameter Shared code placement is set to Shared
location, they are generated to a shared location. In R2012b, shared constant
parameters are generated as individual constants to the const_params.c file in
the_sharedutils folder. This code generation improvement generates less code and
allows for subsystem code reuse across models. For more information, see Shared
Constant Parameters for Code Reuse.

Code efficiency enhancements
The following code generation enhancements improve the efficiency of the generated code
by:

• Removing a root-level outport data copy in the generated code when data is from a
Stateflow chart. This enhancement reduces RAM and ROM consumption and
improves execution speed.

R2012b

12-6

https://www.mathworks.com/help/releases/R2012b/rtw/ug/code-generation-of-shared-constant-parameters-for-code-reuse.html
https://www.mathworks.com/help/releases/R2012b/rtw/ug/code-generation-of-shared-constant-parameters-for-code-reuse.html

• Removing a data copy for masked subsystems when a parameter is a matrix data
type. This enhancement reduces RAM and ROM consumption and improves execution
speed.

• Removing a limitation where the joint presence of initial value and function prototype
control prevent removal of the root-level outport data copy in the generated code. The
outport data copy is removed when the initial value is zero. This enhancement
reduces RAM and ROM consumption and improves execution speed.

• Removing an unnecessary global variable generated by a For Each Subsystem or as a
result from the selected configuration parameter Pack Boolean data into bitfields.
In R2012b, the variable is removed from the global block structure which reduces
global RAM.

Optimized code generation of Delay block

In R2011b, a new Delay block replaced the Integer Delay block. The Delay block now
supports optimized code generation.

Search improvements in code generation report

Searching text in the code generation report highlights results and then scrolls to the
first result. Press Enter to scroll through the subsequent search results. If the search
returns no results, the background of the search box is highlighted red.

GRT template makefile change for MAT-file logging support

In R2012b, the template makefiles (TMFs) for GRT-based targets have been updated to
better support the MAT-file logging (MatFileLogging) model option, which was added
to the Interface pane of the Configuration Parameters dialog box for GRT targets in
R2010b.

Compatibility Considerations

If you authored a TMF for a GRT-based target, you should update your TMF to better
support the MAT-file logging option. If MAT-file logging is selected for a GRT model,
your existing TMF will continue to work. But if MAT-file logging is cleared, compilation
of the model code will fail unless your TMF is updated.

To update your TMF, do the following:

 Check bug reports for issues and fixes

12-7

https://www.mathworks.com/help/releases/R2012b/rtw/ref/code-generation-pane-interface.html#bq9khar-1

1 Add a makefile variable token for MAT-file logging to the TMF:
MAT_FILE = |>MAT_FILE<|

2 Use this variable to create a -D define that is part of the compiler invocation. For
example
CPP_REQ_DEFINES = -DMODEL=$(MODEL) -DRT -DNUMST=$(NUMST) \
 -DTID01EQ=$(TID01EQ) -DNCSTATES=$(NCSTATES) -DUNIX \
 -DMT=$(MULTITASKING) -DHAVESTDIO -DMAT_FILE=$(MAT_FILE)

For examples of this update, see the GRT-based TMFs provided with Simulink Coder,
located at matlabroot/rtw/c/grt/grt_*.tmf.

Change for blocks that use TLC custom code functions in multirate
subsystems

In earlier releases, blocks could use the TLC functions LibSystem*CustomCode to
register custom code to be placed inside the gcd rate of a multirate subsystem. Beginning
in R2012b, blocks that register custom code for this purpose must additionally register
use of custom code with the Simulink software, using the SimStruct macro
ssSetUsingTLCCustomCodeFunctions. Registering allows the Simulink engine to
perform necessary adjustments to handle multiple rates for subsystems with custom
code. Code generation will generate an error if all of the following conditions are true:

• An S-function uses LibSystem*CustomCode functions without registering their use
to Simulink.

• The S-function is placed in a multirate subsystem.
• No nonvirtual block in the subsystem has a sample time equal to the gcd of the

sample times in the system.

Compatibility Considerations

If you authored a block that uses any of the TLC LibSystem*CustomCode functions to
register custom code to be placed inside multirate subsystem functions, the block now
must register custom code use with the Simulink software. Modify the
mdlInitializeSizes code in the block to call the
ssSetUsingTLCCustomCodeFunctions macro, as shown below:

ssSetUsingTLCCustomCodeFunctions (S, 1);

R2012b

12-8

Model rtwdemo_f14 removed from software

In R2012b, the example model rtwdemo_f14 has been removed from the Simulink Coder
software.

Compatibility Considerations

If you need an example model with similar content, open the Simulink example model
sldemo_f14 and configure it with a fixed-step solver. If you need an example GRT model
that is configured for code generation, see the Simulink Coder models in the rtwdemos
list.

 Check bug reports for issues and fixes

12-9

matlab:rtwdemos

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

R2012b

12-10

https://www.mathworks.com/support/bugreports/

R2012a

Version: 8.2

New Features

Bug Fixes

Compatibility Considerations

13

Simplified Call Interface for Generated Code

In previous releases, GRT and GRT-based targets generated code with a GRT-specific
call interface, using the model entry functions model, MdlInitializeSizes,
MdlInitializeSampleTimes, MdlStart, MdlOutputs, MdlUpdate, and
MdlTerminate. ERT and ERT derived targets, by default, generated code with a
simplified call interface, using the model entry functions model_initialize,
model_step, and model_terminate. (Additionally, model options could be applied to
customize the simplified call interface, such as clearing Single output/update
function or Terminate function required.)

In R2012a, GRT targets can now generate code with the same simplified call interface as
ERT targets. This simplifies the task of interacting with the generated code. Target
authors can author simpler main.c or .cpp programs for GRT targets. Also, it is no
longer required to author different main programs for GRT and ERT targets.

To preserve compatibility with models, GRT-based custom targets, and GRT main
modules created in earlier releases, R2012a provides the model option Classic call
interface (GRTInterface), which is located on the Code Generation > Interface
pane of the Configuration Parameters dialog box. If you select Classic call interface,
code generation generates model function calls compatible with the main program
module of the GRT target in models created before R2012a. If you clear the Classic call
interface option, code generation generates the simplified call interface.

Note

• The Classic call interface (GRTInterface) option is available for both GRT-based
and ERT-based models. For Embedded Coder users, it replaces the ERT model option
GRT-compatible call interface (GRTInterface).

• For new GRT and ERT models, the Classic call interface option is cleared by
default. New models use the simplified call interface.

• For GRT models created before R2012a, Classic call interface is selected by default.
Existing GRT models can continue to use the pre-R2012a GRT-specific call interface.

R2012a

13-2

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bq9i70c-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bq9i70c-1

Incremental Code Generation for Top-Level Models

R2012a provides the ability to omit unnecessary code regeneration from top model builds,
allowing top models to be built incrementally. This can significantly reduce model build
times.

Previously, each model build fully regenerated and compiled the top model code.
Beginning in R2012a, the build process checks the structural checksum of the model to
determine whether changes to the model require code regeneration. If code regeneration
is required, the build process fully regenerates and compiles the model code, in the
manner of earlier releases. However, if the generated code is found to be current with
respect to the model, the build process does the following:

1 Skips model code regeneration.
2 Still calls build process hooks, including STF_make_rtw_hook functions and the

post code generation command.
3 Reruns the makefile to make sure external dependencies are recompiled and

relinked.

Additionally, command-line options exist for controlling or overriding the new build
behavior. For more information, see Control Regeneration of Top Model Code.

Minimal Header File Dependencies with packNGo Function

The packNGo function, which packages model code files in a zip file for relocation, now by
default includes only the minimal header files required in the zip file. The packNGo
function now runs a preprocessor to determine the minimal header files required to build
the code. Previously, packNGo included all header files found on the include path.

To revert to the behavior of previous releases, you can use the following form of the
function:

>> packNGo(buildInfo,{'minimalHeaders',false})

 Check bug reports for issues and fixes

13-3

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#btd32ub-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/packngo.html

ASAP2 Enhancements for Model Referencing and Structured Data

Ability to Merge ASAP2 Files Generated for Top and Referenced Models

R2012a provides the ability to merge ASAP2 files generated for top and referenced
models into a single ASAP2 file. To merge ASAP2 files for a given model, use the function
rtw.asap2MergeMdlRefs, which has the following syntax:

[status,info]=rtw.asap2MergeMdlRefs(topModelName,asap2FileName)

For more information, see Merge ASAP2 Files Generated for Top and Referenced Models

ASAP2 File Generation for Test Pointed Signals and States

ASAP2 file generation has been enhanced to generate ASAP2 MEASUREMENT records
for the following data, without the need to resolve them to Simulink data objects:

• Test-pointed Simulink signals, usable inside reusable subsystems
• Test pointed Stateflow states, allowing you to monitor which state is active during

real-time testing
• Test-pointed Stateflow local data
• Root-level inports and outports

Options to control ASAP2 record generation for structured data are defined in
matlabroot/toolbox/rtw/targets/asap2/asap2/user/asap2setup.tlc:

• ASAP2EnableTestPoints enables or disables record generation for test pointed
Simulink signals, test pointed Stateflow states, and test-pointed Stateflow local data
(enabled by default)

• ASAP2EnableRootLevelIO enables or disables record generation for root-level
inports and outports (disabled by default)

For more information, see Customize an ASAP2 File.

ASAP2 File Generation for Tunable Structure Parameters

ASAP2 file generation has been enhanced to generate ASAP2 CHARACTERISTIC
records for tunable structure parameters. This allows you to tune structure parameters
with ASAP2 tools and potentially manage large parameter sets.

R2012a

13-4

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61qx2.html#btdw4d5
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f5595.html

For more information, see Customize an ASAP2 File.

Serial External Mode Communication Using rtiostream API
In R2012a, you can create a serial transport layer for Simulink external mode
communication using the rtiostream API. For more information, see Create a
Transport Layer for External Communication.

Improved Data Transfer in External Mode Communication
In Simulink External mode communication, the rt_OneStep function runs in the
foreground and the while loop of the main function runs in the background. See Real-
Time Single-Tasking Systems. Previously, with code generated for GRT and Embedded
Coder bareboard ERT targets, data transfer between host and server was performed by
functions within the model step function in rt_OneStep. The data transfer between host
and server (in the foreground) would slow down model execution, potentially impairing
real-time performance.

Now, the function that is responsible for data transfer between host and server
(rtExtModeOneStep) is inserted in the while loop of the main function. As the
execution of the while loop in the main function is a background task, real-time
performance potentially is enhanced.

Changes for Desktop IDEs and Desktop Targets
• “Support Added for GCC 4.4 on Host Computers Running Linux with Eclipse IDE”

on page 13-5
• “Limitation: Parallel Builds Not Supported for Desktop Targets” on page 13-5

Support Added for GCC 4.4 on Host Computers Running Linux with Eclipse IDE

Simulink Coder software now supports GCC 4.4 on host computers running Linux with
Eclipse IDE. This support is on both 32-bit and 64-bit host Linux platforms.

If you were using an earlier version of GCC on Linux with Eclipse, upgrade to GCC 4.4.

Limitation: Parallel Builds Not Supported for Desktop Targets

The Simulink Coder product provides an API for MATLAB Distributed Computing
Server™ and Parallel Computing Toolbox™ products. The API allows these products to

 Check bug reports for issues and fixes

13-5

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f5595.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br54_yv.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br54_yv.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f13146.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f13146.html

perform parallel builds that reduce build time for referenced models. However, the API
does not support parallel builds for models whose System target file parameter is set to
idelink_ert.tlc or idelink_grt.tlc. Thus, you cannot perform parallel builds for
Desktop Targets.

Code Generation Report Enhancements

Post-build Report Generation

In previous releases, if you did not configure your model to create a code generation
report, you had to build your model again to open the code generation report. You can
now generate a code generation report after the code generation process completes
without building your model again. This option is available on the model diagram Tools
menu. After building your model, select Tools > Code Generation > Code Generation
Report > Open Model Report. You can also open a code generation report after
building a subsystem. For more information on creating and opening the code generation
report, see Generate an HTML Code Generation Report.

Generate Code Generation Report Programmatically

At the MATLAB command line, you can generate, open, and close an HTML Code
Generation Report with the following functions:

• coder.report.generate generates the code generation report for the specified
model.

• coder.report.open opens an existing code generation report.
• coder.report.close closes the code generation report.

Searching in the Code Generation Report

You can now search within the code generation report using a search box in the
navigation section. After entering text in the search box, the current page scrolls to the
first match and highlights all of the matches on the page. To access the Search text box,
press Ctrl-F.

New Reserved Keywords for Code Generation

The Simulink Coder software includes the following reserved keywords to the Simulink
Coder Code Generation keywords list. For more information, see Reserved Keywords.

R2012a

13-6

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#br2mrkl-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bqnb76d-1.html#bsz4qhq-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f1146799.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/coder.report.generate.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/coder.report.open.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/coder.report.close.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br5qpiq.html#brchnse-1

ERT LINK_DATA_STREAM NUMST RT_MALLOC
HAVESTDIO MODEL PROFILING_ENABLED TID01EQ
INTEGER_CODE MT PROFILING_NUM_SAMPLE

S
USE_RTMODEL

LINK_DATA_BUFFER_SIZ
E

NCSTATES RT VCAST_FLUSH_DATA

Improved MAT-File Logging

R2012a enhances Simulink Coder MAT-file logging to allow logging of multiple data
points per time step, by reallocating buffer memory during target execution. Generated
code logging results now match simulation results for blocks executing multiple times per
step, such as blocks in an iterator subsystem. Previously, code generation issued a
warning that the logged results for blocks executing in an iterator subsystem might not
match the results from simulation.

rtwdemo_f14 Being Removed in a Future Release

The demo model rtwdemo_f14 will be removed in a future release of Simulink Coder
software.

Compatibility Considerations

In R2012a, you can still open rtwdemo_f14 by entering rtwdemo_f14 in the MATLAB
Command Window. Going forward, transition to using f14, sldemo_f14, or a Simulink
Coder model in the rtwdemos list.

New and Enhanced Demos

The following demos have been enhanced in R2012a:

 Check bug reports for issues and fixes

13-7

matlab:rtwdemos

Demo... Now...
rtwdemo_asap2 • Illustrates ASAP2 file generation for test pointed

signals and states.
• Shows how to generate a single ASAP2 file from

files for top and referenced models.
• Generates STD_AXIS and FIX_AXIS descriptions

for lookup table breakpoints.
rtwdemo_configuration_set Shows how to use the Code Generation Advisor and

the Simulink.ConfigSet saveAs method.

R2012a

13-8

matlab:showdemo('rtwdemo_asap2')
matlab:showdemo('rtwdemo_configuration_set_script')
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.configset.html#bsef0i8-1

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

13-9

https://www.mathworks.com/support/bugreports/

R2011b

Version: 8.1

New Features

Bug Fixes

Compatibility Considerations

14

n-D Lookup Table Block Supports Tunable Table Size

The n-D Lookup Table block provides new parameters for specifying a tunable table size
in the generated code.

This enhancement enables you to change the size and values of your lookup table and
breakpoint data without regenerating or recompiling the code.

R2011b

14-2

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html

Complex Output Support in Generated Code for the Trigonometric
Function Block

In previous releases, the imaginary part of a complex output signal was always zero in
the generated code for the Trigonometric Function block. In R2011b, this limitation no
longer exists. Code that you generate for a function in this block now supports complex
outputs.

Code Optimizations for the Combinatorial Logic Block

The Simulink Coder build process uses a new technique to provide more efficient code for
the Combinatorial Logic block.

Benefits include:

• Reuse of variables
• Dead code elimination
• Constant folding
• Expression folding

For example, in previous releases, temporary buffers were created to carry concatenated
signals for this block. In R2011b, the build process eliminates unnecessary temporary
buffers and writes the concatenated signal to the downstream global buffer directly. This
enhancement reduces the stack size and improves code execution speed.

Code Optimizations for the Product Block

The Simulink Coder build process provides more efficient code for matrix inverse and
division operations in the Product block. The following summary describes the benefits
and when each benefit is available:
Benefit Small matrices

(2-by-2 to 5-by-5)
Medium matrices
(6-by-6 to 20-by-20)

Large matrices
(larger than 20-by-20)

Faster code
execution time

Yes, much faster No, slightly slower Yes, faster

Reduced ROM and
RAM usage

Yes, for real values Yes, for real values Yes, for real values

 Check bug reports for issues and fixes

14-3

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/trigonometricfunction.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/combinatoriallogic.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/product.html

Benefit Small matrices
(2-by-2 to 5-by-5)

Medium matrices
(6-by-6 to 20-by-20)

Large matrices
(larger than 20-by-20)

Reuse of variables Yes Yes Yes
Dead code
elimination

Yes Yes Yes

Constant folding Yes Yes Yes
Expression folding Yes Yes Yes
Consistency with
MATLAB Coder

Yes Yes Yes

Compatibility Considerations

In the following cases, the generated code might regress from previous releases:

• The ROM and RAM usage increase for complex input data types.
• For blocks configured with 3 or more inputs of different dimensions, the code might

include an extra buffer to store temporary variables for intermediate results.

Enhanced MISRA C Code Generation Support for Stateflow Charts

In previous releases, the code generated to check whether or not a state in a Stateflow
chart was active included a line that looked something like this:

if (mdl_state_check_er_DWork.is_active_c1_mdl_state_c == 0)

In R2011b, that line has been modified to:

if (mdl_state_check_er_DWork.is_active_c1_mdl_state_c == 0U)

This enhancement supports MISRA C® 2004, rule 10.1.

Change for Constant Sample Time Signals in Generated Code

In previous releases, constant sample time signals were initialized even if the Data
Initialization field of their custom storage class was set to None.

R2011b

14-4

In R2011b, constant sample time signals using a custom storage class for which the Data
Initialization field is set to None will not be initialized for non-conditionally executed
systems in generated code.

Compatibility Considerations

If you use such constant time signals, you will notice that they are not initialized in the
generated code in R2011b. To enable their initialization, change the setting of the Data
Initialization field of their custom storage class from None to another value.

New Code Generation Advisor Objective for GRT Targets

In R2011b, Execution efficiency is now available as a Code Generation Advisor
objective for models with generic real-time (GRT) targets. You can use this objective to
achieve faster code execution times for your models. For more information, see
Application Objectives.

Improved Integer and Fixed-Point Saturating Cast

Simulink Coder software now eliminates more dead branches in both integer and fixed-
point saturation code.

Generate Multitasking Code for Concurrent Execution on Multicore
Processors

The Simulink Coder product extends the concurrent execution modeling capability of the
Simulink product. With Simulink Coder, you can generate multitasking code that uses
POSIX threads (Pthreads) or Windows threads for concurrent execution on multicore
processors running Linux, Mac OS X, or Windows.

See Configuring Models for Targets with Multicore Processors.

Changes for Desktop IDEs and Desktop Targets
• “New Target Function Library for Intel IPP/SSE (GNU)” on page 14-6
• “Support Added for Single Instruction Multiple Data (SIMD) with Intel Processors”

on page 14-6

 Check bug reports for issues and fixes

14-5

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br1kmvm-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs13l5v.html

New Target Function Library for Intel IPP/SSE (GNU)

This release adds a new Target Function Library (TFL), Intel IPP/SSE (GNU), for the
GCC compiler. This library includes the Intel Performance Primitives (IPP) and
Streaming SIMD Extensions (SSE) code replacements.

Support Added for Single Instruction Multiple Data (SIMD) with Intel Processors

This release adds support for the SIMD capabilities of the Intel processors. The use of
SIMD instructions increases throughput compared to traditional Single Instruction
Single Data (SISD) processing.

The Intel IPP/SSE (GNU) TFL (code replacement library) optimizes generated code
for SIMD.

The performance of the SIMD-enabled executable depends on several factors, including:

• Processor architecture of the target
• Optimized library support for the target
• The type and number of TFL replacements in the generated algorithmic code

Evaluate the performance of your application before and after using the TFL.

To use the SIMD capabilities with GCC and Intel processors, enable the Intel IPP/SSE
(GNU) TFL. See Code Replacement Library (CRL).

Reserved Keyword UNUSED_PARAMETER

The Simulink Coder software adds the UNUSED_PARAMETER macro to the reserved
keywords list for code generation. To view the complete list, see Reserved Keywords. In
R2011b, code generation now defines UNUSED_PARAMETER in rt_defines.h. Previously,
it was defined in model_private.h.

Target API for Verifying MATLAB® Distributed Computing Server™
Worker Configuration for Parallel Builds

R2010b added the ability to use remote workers in MATLAB® Distributed Computing
Server™ configurations for parallel builds of model reference hierarchies. This
introduced the possibility that parallel workers might have different configurations,

R2011b

14-6

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br5qpiq.html#brchnse-1

some of which might not be compatible with a specific Simulink Coder target build. For
example, the required compiler might not be installed on a worker system.

R2011b provides a programming interface that target authors can use to automatically
check the configuration of parallel workers and, if the parallel workers are not set up as
required, take action, such as throwing an error or reverting to sequential builds. For
more information, see Support Model Referencing in the Simulink Coder documentation.

For more information about parallel builds, see Reduce Build Time for Referenced
Models in the Simulink Coder documentation.

License Names Not Yet Updated for Coder Product Restructuring

The Simulink Coder and Embedded Coder license name strings stored in license.dat
and returned by the license ('inuse') function have not yet been updated for the
R2011a coder product restructuring. Specifically, the license ('inuse') function
continues to return 'real-time_workshop' for Simulink Coder and
'rtw_embedded_coder' for Embedded Coder, as shown below:

>> license('inuse')
matlab
matlab_coder
real-time_workshop
rtw_embedded_coder
simulink
>>

The license name strings intentionally were not changed, in order to avoid license
management complications in situations where Release 2011a or higher is used alongside
a preR2011a release in a common operating environment. MathWorks plans to address
this issue in a future release.

For more information about using the function, see the license documentation.

New and Enhanced Demos

The following demos have been enhanced in R2011b:

 Check bug reports for issues and fixes

14-7

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bse3c9v-1.html#bru4now-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#br2mrkl-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#br2mrkl-1
https://www.mathworks.com/help/releases/R2012a/techdoc/ref/license.html

Demo... Now...
rtwdemo_pmsmfoc_script Shows how you can perform system-level simulation

and algorithmic code generation using Field-Oriented
Control for a Permanent Magnet Synchronous
Machine

R2011b

14-8

matlab:showdemo('rtwdemo_pmsmfoc_script')

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

14-9

https://www.mathworks.com/support/bugreports/

R2011a

Version: 8.0

New Features

Bug Fixes

Compatibility Considerations

15

Coder Product Restructuring
• “Product Restructuring Overview” on page 15-2
• “Resources for Upgrading from Real-Time Workshop or Stateflow Coder”

on page 15-3
• “Migration of Embedded MATLAB Coder Features to MATLAB Coder”

on page 15-4
• “Migration of Embedded IDE Link and Target Support Package Features to Simulink

Coder and Embedded Coder” on page 15-4
• “User Interface Changes Related to Product Restructuring” on page 15-5
• “Simulink Graphical User Interface Changes” on page 15-5

Product Restructuring Overview

In R2011a, the Simulink Coder product combines and replaces the Real-Time
Workshop® and Stateflow Coder products. Additionally,

• The Real-Time Workshop facility for converting MATLAB code to C/C++ code,
formerly referred to as Embedded MATLAB® Coder, has migrated to the new
MATLAB Coder product.

• The previously existing products Embedded IDE Link™ and Target Support
Package™ have been integrated into the new Simulink Coder and Embedded Coder
products.

The following figure shows the R2011a transitions for C/C++ code generation related
products, from the R2010b products to the new MATLAB Coder, Simulink Coder, and
Embedded Coder products.

R2011a

15-2

Simulink

Coder

MATLAB Coder

Embedded

Coder

Embedded

IDE Link

Target

Support
Package Stateflow

Coder

Real-Time

Workshop
Embedded

Coder

Real-Time

Workshop

embedded

The following sections address topics related to the product restructuring.

Resources for Upgrading from Real-Time Workshop or Stateflow Coder

If you are upgrading to Simulink Coder from Real-Time Workshop or Stateflow Coder,
review information about compatibility and upgrade issues at the following locations:

• Release Notes for Simulink Coder (latest release), “Compatibility Summary” section
• In the Archived documentation on the MathWorks web site, select R2010b, and view

the following tables, which are provided in the release notes for Real-Time Workshop
and Stateflow Coder:

• Compatibility Summary for Real-Time Workshop Software
• Compatibility Summary for Stateflow and Stateflow Coder Software

These tables provide compatibility information for releases up through R2010b.
• If you use the Embedded IDE Link or Target Support Package capabilities that now

are integrated into Simulink Coder and Embedded Coder, go to the Archived
documentation, select R2010b, and view the corresponding tables for each product:

• Compatibility Summary for Embedded IDE Link

 Check bug reports for issues and fixes

15-3

http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/doc-archives.html

• Compatibility Summary for Target Support Package

You can also refer to the rest of the archived documentation, including release notes, for
the Real-Time Workshop, Stateflow Coder, Embedded IDE Link, and Target Support
Package products.

Migration of Embedded MATLAB Coder Features to MATLAB Coder

In R2011a, the MATLAB Coder function codegen replaces the Real-Time Workshop
function emlc. The emlc function still works in R2011a but generates a warning, and
will be removed in a future release. For more information, see Migrating from Real-Time
Workshop emlc Function in the MATLAB Coder release notes.

Migration of Embedded IDE Link and Target Support Package Features to Simulink Coder
and Embedded Coder

In R2011a, the capabilities formerly provided by the Embedded IDE Link and Target
Support Package products have been integrated into Simulink Coder and Embedded
Coder. The follow table summarizes the transition of the Embedded IDE Link and Target
Support Package hardware and software support into coder products.
Former Product Supported Hardware and

Software
Simulink
Coder

Embedded
Coder

Embedded IDE Link Altium® TASKING x
Analog Devices® VisualDSP
++®

 x

Eclipse IDE x x
Green Hills® MULTI® x
Texas Instruments™ Code
Composer Studio™

 x

Target Support Package Analog Devices Blackfin® x
ARM x
Freescale™ MPC5xx x
Infineon® C166® x
Texas Instruments C2000™ x
Texas Instruments C5000™ x

R2011a

15-4

http://www.mathworks.com/help/doc-archives.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/rn/bqmfe_z-10.html#bsveo2c
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/rn/bqmfe_z-10.html#bsveo2c

Former Product Supported Hardware and
Software

Simulink
Coder

Embedded
Coder

Texas Instruments C6000™ x
Linux OS x x
Windows OS x
VxWorks RTOS x

User Interface Changes Related to Product Restructuring

Some user interface changes were made as part of merging the Real-Time Workshop and
Stateflow Coder products into Simulink Coder. They include:

• Changes to code generation related elements in the Simulink Configuration
Parameters dialog box

• Changes to code generation related elements in Simulink menus
• Changes to code generation related elements in Simulink blocks, including block

parameters and dialog boxes, and block libraries
• References to Real-Time Workshop and Stateflow Coder and related terms in error

messages, tool tips, demos, and product documentation replaced with references to
the latest software

Simulink Graphical User Interface Changes
Where... Previously... Now...
Configuration Parameters
dialog box

Real-Time Workshop
pane

Code Generation pane

Model diagram window Tools > Real-Time
Workshop

Tools > Code Generation

Subsystem context menu Real-Time Workshop Code Generation

 Check bug reports for issues and fixes

15-5

Where... Previously... Now...
Subsystem Parameters
dialog box

Following parameters on
main pane:

• Real-Time Workshop
system code

• Real-Time Workshop
function name options

• Real-Time Workshop
function name

• Real-Time Workshop
file name options

• Real-Time Workshop
file name (no
extension)

On new Code Generation
pane and renamed:

• Function packaging
• Function name

options
• Function name
• File name options
• File name (no

extension)

Changes for Desktop IDEs and Desktop Targets
• “Feature Support for Desktop IDEs and Desktop Targets” on page 15-6
• “Location of Blocks for Desktop Targets” on page 15-7
• “Location of Demos for Desktop IDEs and Desktop Targets” on page 15-7
• “Multicore Deployment with Rate Based Multithreading” on page 15-8

Feature Support for Desktop IDEs and Desktop Targets

The Simulink Coder software provides the following features as implemented in the
former Target Support Package and Embedded IDE Link products:

• Automation Interface
• External Mode
• Multicore Deployment with Rate Based Multithreading
• Makefile Generation (XMakefile)

Note You can only use these features in the 32-bit version of your MathWorks products.
To use these features on 64-bit hardware, install and run the 32-bit versions of your
MathWorks products.

R2011a

15-6

Location of Blocks for Desktop Targets

Blocks from the former Target Support Package product and Embedded IDE Link
product are now located in Simulink Coder under Desktop Targets.

Desktop Targets includes the following types of blocks:

• Host Communication
• Operating Systems

• Linux
• Windows

Location of Demos for Desktop IDEs and Desktop Targets

Demos from the former Target Support Package product and Embedded IDE Link
product now reside under Simulink Coder product help. Click the expandable links, as
shown.

 Check bug reports for issues and fixes

15-7

Multicore Deployment with Rate Based Multithreading

You can deploy rate-based multithreading applications to multicore processors running
Windows and Linux. This feature potentially improves performance by taking advantage
of multicore hardware resources.

Also see the Running Target Applications on Multicore Processors user's guide topic.

R2011a

15-8

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bspewvw-1.html#bszx1ja-1

Code Optimizations for Discrete State-Space Block, Product Block, and
MinMax Block

The Simulink Coder build process uses a new technique to provide more efficient code for
the following blocks:

• Discrete State-Space
• Product (element-wise matrix operations)

Benefits include:

• Reuse of variables
• Dead code elimination
• Constant folding
• Expression folding

For example, in previous releases, temporary buffers were created to carry concatenated
signals for these blocks. In R2011a, the build process eliminates unnecessary temporary
buffers and writes the concatenated signal to the downstream global buffer directly. This
enhancement reduces the stack size and improves code execution speed.

The build process also provides more efficient code for the MinMax block. In R2011a,
expression folding is enhanced with several local optimizations that enable more
aggressive folding. This enhancement improves code efficiency for foldable matrix
operations.

Ability to Share User-Defined Data Types Across Models

In previous releases, user-defined data types that were shared among multiple models
generated duplicate type definitions in the model_types.h file for each model. R2011a
provides the ability to generate user-defined data type definitions into a header file that
can be shared across multiple models, removing the need for duplicate copies of the data
type definitions. User-defined data types that you can set up in a shared header file
include:

• Simulink data type objects that you instantiate from the classes
Simulink.AliasType, Simulink.Bus, Simulink.NumericType, and
Simulink.StructType

 Check bug reports for issues and fixes

15-9

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/discretestatespace.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/product.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/minmax.html

• Enumeration types that you define in MATLAB code

For more information, see Share User-Defined Data Types Across Models in the
Simulink Coder documentation.

C API Provides Access to Root-Level Inputs and Outputs

The C API now provides programmatic access to root-level inputs and outputs. This
allows you to log and monitor the root-level inputs and outputs of a model while you run
the code generated for the model. To generate C API code for accessing root-level inputs
and outputs at run time, select the model option Generate C API for: root-level I/O.

Macros for accessing C API generated structures are located in
matlabroot/rtw/c/src/rtw_capi.h and matlabroot/rtw/c/src/
rtw_modelmap.h, where matlabroot represents your MATLAB installation root.

For more information, see Generate C API for: root-level I/O and Data Interchange Using
the C API in the Simulink Coder documentation.

ASAP2 File Generation Supports Standard Axis Format for Lookup
Tables

In previous releases, ASAP2 file generation for lookup table blocks supported the Fix
Axis and Common Axis formats, but not the Standard Axis format, a format in which
axis points are global in code but not shared among tables. R2011a adds support for
Standard Axis format.

For more information, see Define ASAP2 Information for Lookup Tables in the Simulink
Coder documentation.

ASAP2 File Generation Enhancements for Computation Methods

Custom Names for Computation Methods

In generated ASAP2 files, computation methods translate the electronic control unit
(ECU) internal representation of measurement and calibration quantities into a physical
model oriented representation. R2011a adds the MATLAB function
getCompuMethodName, which you can use to customize the names of computation
methods. You can provide names that are more intuitive, enhancing ASAP2 file

R2011a

15-10

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br9525c.html#bsz75mn-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bss5v2t-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61qx2.html#f75428
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61qx2.html#f75428
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61qx2.html#bsqg6ot-1

readability, or names that meet organizational requirements. For more information, see
Customize Computation Method Names in the Simulink Coder documentation.

Ability to Suppress Computation Methods for FIX_AXIS When Not Required

Versions 1.51 and later of the ASAP2 specification state that for certain cases of lookup
table axis descriptions (integer data type and no doc units), a computation method is not
required and the Conversion Method parameter must be set to the value
NO_COMPU_METHOD. Beginning in R2011a, you can control whether or not computation
methods are suppressed when not required, using the Target Language Compiler (TLC)
option ASAP2GenNoCompuMethod. For more information, see Suppress Computation
Methods for FIX_AXIS in the Simulink Coder documentation.

Lookup Table Block Option to Remove Input Range Checks in
Generated Code

When the breakpoint input to a Prelookup, 1-D Lookup Table, 2-D Lookup Table, or n-D
Lookup Table block always falls within the range of valid breakpoint values, you can
disable range checking in the generated code. By selecting Remove protection against
out-of-range input in generated code on the block dialog box, your code can be more
efficient.

 Check bug reports for issues and fixes

15-11

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f5595.html#bsz6h9b-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f5595.html#bsz6ijv-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f5595.html#bsz6ijv-1
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/1dlookuptable.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/2dlookuptable.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html

Reentrant Code Generation for Stateflow Charts That Use Events

When you generate code for Stateflow charts that use events, the code does not use a
global variable to keep track of the currently active event. Elimination of this global
variable enables the code to be reentrant, which allows you to:

• Deploy your code in multithreading environments
• Share the same algorithm with different persistent data

R2011a

15-12

• Compile code that uses function variables that are too large to fit on the stack

In previous releases, reentrant code generation was not possible for charts that used
events.

Redundant Check Code Removed for Stateflow Charts That Use
Temporal Operators

When you generate code for Stateflow charts that use temporal operators, the code
excludes redundant checks for tick events and input events that are always true. This
enhancement enables the code to be more efficient and applies to temporal operators
after, before, at, every, and temporalCount.

In previous releases, the code generated for a temporal logic expression such as
after(x,tick) would check for two conditions:

(event == tick) && (counter > x)

In R2011a, the code generated for after(x,tick) checks only for when the temporal
counter exceeds x:

(counter > x)

This enhancement does not apply when a chart with multiple input events has super-
step semantics enabled.

Support for Multiple Asynchronous Function Calls Into a Model Block

Simulink and Simulink Coder software now support multiple asynchronous function calls
into a Model block. This capability relies in part on the new Asynchronous Task
Specification block.

The Asynchronous Task Specification block, in combination with a root-level Inport
block, allows you to specify an asynchronous function-call input to a Model block. After
placing this block at the output port of each root-level Inport block that outputs a
function-call signal, select Output function call on the Signal Attributes pane of the
Inport block. The Inport block then accepts function-call signals. You can use
Asynchronous Task Specification blocks to specify parameters for the asynchronous task
associated with the respective Inport blocks.

 Check bug reports for issues and fixes

15-13

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/asynchronoustaskspecification.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/inport.html

Note Use the new function call API, LibBlockExecuteFcnCall, to make function calls
from an asynchronous source block to reference model destination blocks.

Note The demo model rtwdemo_async_mdlreftop shows how you can simulate and
generate code for asynchronous events on a real-time multitasking system, using
asynchronous function calls as Model block inputs.

Changes to ver Function Product Arguments

The following changes have been made to ver function arguments related to code
generation products:

• The new argument 'simulinkcoder' returns information about the installed
version of the Simulink Coder product.

• The argument 'rtw' works but now returns information about Simulink Coder
instead of Real-Time Workshop. The software also displays the following message:
Warning: Support for ver('rtw') will be removed in a future release.
Use ver('simulinkcoder') instead.

• The argument 'coder', which previously returned information about the installed
version of the Stateflow Coder product, no longer works. The software displays a “not
found” warning.

For more information about using the function, see the ver documentation.

Compatibility Considerations

If a script calls the ver function with the'rtw' argument or the'coder' argument,
update the script appropriately. For example, you can update the ver call to use the
'simulinkcoder' argument, or remove the ver call.

Updates to Target Language Compiler (TLC) Semantics and Diagnostic
Information

Updates to TLC simplifies semantics and produces diagnostic information when using
the scope resolution operator (::) and built-in function EXISTS(::).

R2011a

15-14

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/tlc/f43806.html#bp6ty7k
matlab:showdemo rtwdemo_async_mdlreftop
https://www.mathworks.com/help/releases/R2012a/techdoc/ref/ver.html

• If var can not be resolved in global scope, ::var errors out
• If var can only be resolved in local scope, EXISTS(::var) returns false
• Diagnostic information highlights problematic TLC coding

For more information, see Introducing the Target Language Compiler.

Change to Terminate Function for a Target Language Compiler (TLC)
Block Implementation

Previously, the code generator attempted to execute the Terminate function from the
TLC implementation of a block, even if the function did not exist. Now, the code
generator only attempts to execute a Terminate function if it is defined in the TLC
implementation of a block. In the case where the TLC implementation of a block includes
a secondary TLC file, which includes a Terminate function, that Terminate function no
longer executes.

New and Enhanced Demos

The following demos have been added in R2011a:
Demo... Shows How You Can...
rtwdemo_async_mdlreftop Simulate and generate code for asynchronous events

on a real-time multitasking system, using
asynchronous function calls as Model block inputs.

The following demos have been enhanced in R2011a:
Demo... Now...
vipstabilize_fixpt_beagleboard
videostabilization_host_templ

Use the new Video Capture block to simulate or
capture a video input signal in the Video
Stabilization demo.

 Check bug reports for issues and fixes

15-15

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/tlc/f39660.html
matlab:showdemo rtwdemo_async_mdlreftop
matlab:vipstabilize_fixpt_beagleboard
matlab:videostabilization_host_templ

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs
tool with the search phrase "Incorrect Code Generation" to obtain a report of known bugs
that produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

R2011a

15-16

https://www.mathworks.com/support/bugreports/

